Suppr超能文献

基于高频功率的弥散加权成像对神经上皮肿瘤分级预测的诊断价值。

The diagnostic value of high-frequency power-based diffusion-weighted imaging in prediction of neuroepithelial tumour grading.

机构信息

Department of Radiology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China.

Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, China.

出版信息

Eur Radiol. 2017 Dec;27(12):5056-5063. doi: 10.1007/s00330-017-4899-4. Epub 2017 Jun 12.

Abstract

OBJECTIVES

To retrospectively evaluate the diagnostic value of high-frequency power (HFP) compared with the minimum apparent diffusion coefficient (MinADC) in the prediction of neuroepithelial tumour grading.

METHODS

Diffusion-weighted imaging (DWI) data were acquired on 115 patients by a 3.0-T MRI system, which included b0 images and b1000 images over the whole brain in each patient. The HFP values and MinADC values were calculated by an in-house script written on the MATLAB platform.

RESULTS

There was a significant difference among each group excluding grade I (G1) vs. grade II (G2) (P = 0.309) for HFP and among each group for MinADC. ROC analysis showed a higher discriminative accuracy between low-grade glioma (LGG) and high-grade glioma (HGG) for HFP with area under the curve (AUC) value 1 compared with that for MinADC with AUC 0.83 ± 0.04 and also demonstrated a higher discriminative ability among the G1-grade IV (G4) group for HFP compared with that for MinADC except G1 vs. G2.

CONCLUSIONS

HFP could provide a simple and effective optimal tool for the prediction of neuroepithelial tumour grading based on diffusion-weighted images in routine clinical practice.

KEY POINTS

• HFP shows positive correlation with neuroepithelial tumour grading. • HFP presents a good diagnostic efficacy for LGG and HGG. • HFP is helpful in the selection of brain tumour boundary.

摘要

目的

回顾性评估高频功率(HFP)与最小表观扩散系数(MinADC)在预测神经上皮肿瘤分级中的诊断价值。

方法

通过 3.0T MRI 系统对 115 例患者进行弥散加权成像(DWI)数据采集,每位患者均采集全脑 b0 图像和 b1000 图像。HFP 值和 MinADC 值通过在 MATLAB 平台上编写的内部脚本计算得出。

结果

HFP 在除 I 级(G1)与 II 级(G2)(P=0.309)外的各分组之间存在显著差异,而 MinADC 在各分组之间存在显著差异。ROC 分析显示,HFP 对低级别胶质瘤(LGG)和高级别胶质瘤(HGG)的鉴别准确率高于 MinADC 的 AUC 值 0.83±0.04,并且在 HFP 中,G1 级与 G4 级(G4)组之间的鉴别能力高于 MinADC,除 G1 与 G2 之间。

结论

HFP 可作为一种简单有效的预测神经上皮肿瘤分级的方法,基于常规临床实践中的弥散加权成像。

关键点

• HFP 与神经上皮肿瘤分级呈正相关。

• HFP 对 LGG 和 HGG 具有良好的诊断效能。

• HFP 有助于脑肿瘤边界的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验