Suppr超能文献

利用信号强度梯度技术对脑肿瘤扩散加权磁共振图像进行定量分析。

Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique.

作者信息

Shanbhag S S, Udupi G R, Patil K M, Ranganath K

机构信息

Electronics and Communication Engineering, Gogte Institute of Technology, Belgaum 590008, India.

Indian Institute of Technology Madras, Belgaum 590009, India.

出版信息

J Med Eng. 2014;2014:619081. doi: 10.1155/2014/619081. Epub 2014 May 28.

Abstract

The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI) in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW) images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG) parameter. The relative increase in the SIG values (RSIG) for the subjects with glioma and meningioma was in the range of 10.08-28.36 times and 5.60-9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P < 0.01), with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

摘要

本研究的目的是评估扩散加权磁共振成像(DW-MRI)在脑肿瘤(即胶质瘤和脑膜瘤)检查及分类中的作用。我们的假设是,由于扩散加权(DW)图像上的信号强度变化取决于肿瘤的组织学和细胞密度,分析DW图像上的信号强度特征可能有助于区分肿瘤类型。为此,我们使用信号强度梯度(SIG)参数对20例胶质瘤患者和12例脑膜瘤患者的整个肿瘤体积数据的DW图像上的信号强度变化进行了研究和量化。与对侧半球相应的SIG值相比,胶质瘤患者和脑膜瘤患者的SIG值相对增加(RSIG)分别在10.08 - 28.36倍和5.60 - 9.86倍的范围内。胶质瘤患者和脑膜瘤患者的RSIG值存在显著差异(P < 0.01),两种肿瘤的RSIG值没有重叠。结果表明,RSIG值的定量变化可应用于胶质瘤和脑膜瘤的鉴别诊断,将其应用于临床诊断和治疗可能会有所帮助且提供有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6292/4782666/4ab21b978c57/JME2014-619081.001.jpg

相似文献

3
High b-value diffusion-weighted MRI of normal brain.
J Comput Assist Tomogr. 2001 Jul-Aug;25(4):515-9. doi: 10.1097/00004728-200107000-00002.
6
Preoperative grading of supratentorial gliomas using high or standard b-value diffusion-weighted MR imaging at 3T.
Diagn Interv Imaging. 2017 Mar;98(3):261-268. doi: 10.1016/j.diii.2016.11.005. Epub 2016 Dec 28.

引用本文的文献

1
Quantitative analysis of in-vivo microbubble distribution in the human brain.
Sci Rep. 2021 Jun 3;11(1):11797. doi: 10.1038/s41598-021-91252-w.
2
The diagnostic value of high-frequency power-based diffusion-weighted imaging in prediction of neuroepithelial tumour grading.
Eur Radiol. 2017 Dec;27(12):5056-5063. doi: 10.1007/s00330-017-4899-4. Epub 2017 Jun 12.
3
A Low Cost Structurally Optimized Design for Diverse Filter Types.
PLoS One. 2016 Nov 10;11(11):e0166056. doi: 10.1371/journal.pone.0166056. eCollection 2016.

本文引用的文献

1
Descriptive epidemiology of primary brain and CNS tumors in Delhi, 2003-2007.
Asian Pac J Cancer Prev. 2012;13(2):637-40. doi: 10.7314/apjcp.2012.13.2.637.
3
Diffusion imaging of brain tumors.
NMR Biomed. 2010 Aug;23(7):849-64. doi: 10.1002/nbm.1544.
4
Diffusion-weighted imaging does not predict histological grading in meningiomas.
Acta Neurochir (Wien). 2010 Aug;152(8):1315-9; discussion 1319. doi: 10.1007/s00701-010-0657-y. Epub 2010 Apr 29.
8
Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging.
J Neurooncol. 2009 Aug;94(1):87-96. doi: 10.1007/s11060-009-9807-6. Epub 2009 Feb 20.
9
Trends in the brain cancer incidence in India.
Asian Pac J Cancer Prev. 2008 Apr-Jun;9(2):267-70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验