Ghodasara Amar, Voigt Christopher A
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Nucleic Acids Res. 2017 Jul 27;45(13):8116-8127. doi: 10.1093/nar/gkx530.
Balancing protein expression is critical when optimizing genetic systems. Typically, this requires library construction to vary the genetic parts controlling each gene, which can be expensive and time-consuming. Here, we develop sRNAs corresponding to 15nt 'target' sequences that can be inserted upstream of a gene. The targeted gene can be repressed from 1.6- to 87-fold by controlling sRNA expression using promoters of different strength. A pool is built where six sRNAs are placed under the control of 16 promoters that span a ∼103-fold range of strengths, yielding ∼107 combinations. This pool can simultaneously optimize up to six genes in a system. This requires building only a single system-specific construct by placing a target sequence upstream of each gene and transforming it with the pre-built sRNA pool. The resulting library is screened and the top clone is sequenced to determine the promoter controlling each sRNA, from which the fold-repression of the genes can be inferred. The system is then rebuilt by rationally selecting parts that implement the optimal expression of each gene. We demonstrate the versatility of this approach by using the same pool to optimize a metabolic pathway (β-carotene) and genetic circuit (XNOR logic gate).
在优化遗传系统时,平衡蛋白质表达至关重要。通常,这需要构建文库来改变控制每个基因的遗传元件,这可能既昂贵又耗时。在此,我们开发了与15nt“靶标”序列相对应的小RNA(sRNA),这些序列可插入基因上游。通过使用不同强度的启动子控制sRNA表达,可使靶标基因的表达被抑制1.6至87倍。构建了一个文库,其中六个sRNA置于16个启动子的控制之下,这些启动子的强度范围跨越约103倍,产生约107种组合。该文库可同时优化系统中的多达六个基因。这仅需通过在每个基因上游放置一个靶标序列并用预先构建的sRNA文库转化来构建单个系统特异性构建体。对所得文库进行筛选,并对最佳克隆进行测序以确定控制每个sRNA的启动子,由此可推断基因的抑制倍数。然后通过合理选择实现每个基因最佳表达的元件来重建系统。我们通过使用同一个文库优化代谢途径(β-胡萝卜素)和遗传电路(异或非逻辑门)来证明这种方法的通用性。