Noh Minho, Yoo Seung Min, Yang Dongsoo, Lee Sang Yup
Department of Chemical and Biomolecular Engineering (BK21 Plus Program) , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea.
School of Integrative Engineering , Chung-Ang University , 84 Heukseok-ro, Dongjak-gu , Seoul 06974 , Republic of Korea.
ACS Synth Biol. 2019 Jun 21;8(6):1452-1461. doi: 10.1021/acssynbio.9b00165. Epub 2019 Jun 6.
Gene expression regulation in broad-spectrum range is critical for constructing cell factories and genetic circuits to balance and control system-wide fluxes. Synthetic small regulatory RNAs (sRNAs) effectively regulate gene expression at the translational level by modulating an mRNA-binding chance and sRNA abundance; however, it can control target gene expression only within the limit of the intrinsic repression ability of sRNAs. Here, we systematically mutated a SgrS scaffold as a model sRNA by dividing the Hfq-binding module of the sRNA into the three regions: the A/U-rich sequence, the stem, and the hairpin loop, and examined how efficiently the mutants suppressed DsRed2 expression. By doing this, we found that a scaffold with an altered A/U-rich sequence (CUUU) and stem length and that with altered A/U-rich sequence (GCAC) showed a 3-fold stronger and a 3-fold weaker repression than the original scaffold, respectively. For practical application of altered scaffolds, proof-of-concept experiments were performed by constructing a library of 67 synthetic sRNAs with the strongest scaffold, each one targeting a different rationally selected gene, and using this library to enhance cadaverine production in Escherichia coli, yielding in 27% increase (1.67 g/L in flask cultivation, 13.7 g/L in fed-batch cultivation). Synthetic sRNAs with engineered sRNA scaffolds could be useful in modulating gene expression for strain improvement.
在广谱范围内进行基因表达调控对于构建细胞工厂和遗传回路以平衡和控制系统范围的通量至关重要。合成小调节RNA(sRNA)通过调节mRNA结合机会和sRNA丰度在翻译水平上有效调节基因表达;然而,它只能在sRNA固有抑制能力的限制范围内控制靶基因表达。在这里,我们通过将sRNA的Hfq结合模块分为三个区域:富含A/U的序列、茎和发夹环,系统地突变作为模型sRNA的SgrS支架,并研究突变体抑制DsRed2表达的效率。通过这样做,我们发现富含A/U的序列(CUUU)和茎长度改变的支架以及富含A/U的序列(GCAC)改变的支架分别比原始支架表现出强3倍和弱3倍的抑制作用。为了验证改变后的支架的实际应用,通过构建一个由67个具有最强支架的合成sRNA组成的文库进行了概念验证实验,每个sRNA靶向一个不同的合理选择的基因,并使用该文库提高大肠杆菌中尸胺的产量,产量提高了27%(摇瓶培养中为1.67 g/L,分批补料培养中为13.7 g/L)。具有工程化sRNA支架的合成sRNA可用于调节基因表达以改善菌株。