Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, 91125, USA.
Sci Rep. 2017 Jun 13;7(1):3403. doi: 10.1038/s41598-017-01434-8.
Energy storage occurs in a variety of physical and chemical processes. In particular, defects in materials can be regarded as energy storage units since they are long-lived and require energy to be formed. Here, we investigate energy storage in non-equilibrium populations of materials defects, such as those generated by bombardment or irradiation. We first estimate upper limits and trends for energy storage using defects. First-principles calculations are then employed to compute the stored energy in the most promising elemental materials, including tungsten, silicon, graphite, diamond and graphene, for point defects such as vacancies, interstitials and Frenkel pairs. We find that defect concentrations achievable experimentally (~0.1-1 at.%) can store large energies per volume and weight, up to ~5 MJ/L and 1.5 MJ/kg for covalent materials. Engineering challenges and proof-of-concept devices for storing and releasing energy with defects are discussed. Our work demonstrates the potential of storing energy using defects in materials.
能量存储发生在各种物理和化学过程中。特别是,材料中的缺陷可以被视为能量存储单元,因为它们寿命长,并且需要能量才能形成。在这里,我们研究了由轰击或辐照产生的材料缺陷等非平衡态群体中的能量存储。我们首先使用缺陷来估计能量存储的上限和趋势。然后,我们使用第一性原理计算来计算最有前途的元素材料(包括钨、硅、石墨、金刚石和石墨烯)中诸如空位、间隙和弗伦克尔对之类的点缺陷的存储能量。我们发现,实验上可达到的缺陷浓度(约 0.1-1 at.%)可以在每单位体积和重量上存储大量能量,对于共价材料,最高可达约 5 MJ/L 和 1.5 MJ/kg。我们讨论了使用缺陷来存储和释放能量的工程挑战和概念验证设备。我们的工作表明了使用材料中的缺陷来存储能量的潜力。