Suppr超能文献

基于核特征滤波器组共空间模式的脑电信号重度抑郁症检测。

Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.

机构信息

Department of Psychiatry, National Taiwan University Hospital, Taipei 10051, Taiwan.

School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.

出版信息

Sensors (Basel). 2017 Jun 14;17(6):1385. doi: 10.3390/s17061385.

Abstract

Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.

摘要

重度抑郁症(MDD)已成为全球疾病负担的主要原因之一;然而,目前尚无可靠的生物学标志物或生理测量方法来有效地剖析 MDD 的异质性。在这里,我们提出了一种基于头皮脑电图(EEG)信号和一种称为核特征滤波器组共空间模式(KEFB-CSP)的稳健光谱-空间 EEG 特征提取器的新方法。KEFB-CSP 首先将多通道原始 EEG 信号过滤到一组涵盖 theta 到 gamma 频段的频率子带中,然后将每个子带的 EEG 信号从原始传感器空间转换到新空间,在新空间中,新信号(即 CSPs)对于 MDD 和健康对照组之间的分类是最佳的,最后应用核主成分分析(kernel PCA)将包含所有频率子带的 CSPs 的向量转换为称为 KEFB-CSP 的低维特征向量。12 名 MDD 患者和 12 名健康对照者参与了这项研究,我们从每位参与者收集了 54 段 6 秒长的静息态 EEG(共 5 分钟和 24 秒)。我们的结果表明,所提出的 KEFB-CSP 优于其他 EEG 特征,包括 EEG 频段的功率和分形维数,这些特征已广泛应用于以前基于 EEG 的抑郁检测研究中。结果还表明,来自颞区的 8 个电极比其他头皮区域具有更高的准确性。当仅使用颞区的 8 个电极和支持向量机(SVM)分类器时,KEFB-CSP 能够在单次试验分析中实现 81.23%的平均 EEG 分类准确性。我们还设计了一种基于投票的留一参与者外处理程序来测试参与者独立的个体分类准确性。基于投票的结果表明,使用 KEFP-CSP 特征和 SVM 分类器,仅需几次试验即可达到约 80%的平均分类准确性,并且随着试验次数的增加(即 <7 次),准确性似乎变得稳定。这些发现表明,该方法具有很大的潜力,可以开发一种高效(仅需来自颞区的 8 个电极的几个 6 秒 EEG 信号)和有效的(~80%的分类准确性)基于 EEG 的脑机接口(BCI)系统,该系统将来可能有助于精神科医生为 MDD 患者提供个性化和有效的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ba/5492453/1e1277218054/sensors-17-01385-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验