Harris Kameron Decker, Dashevskiy Tatiana, Mendoza Joshua, Garcia Alfredo J, Ramirez Jan-Marino, Shea-Brown Eric
Department of Applied Mathematics, University of Washington, Seattle, Washington;
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.
J Neurophysiol. 2017 Oct 1;118(4):2070-2088. doi: 10.1152/jn.00174.2017. Epub 2017 Jun 14.
Unraveling the interplay of excitation and inhibition within rhythm-generating networks remains a fundamental issue in neuroscience. We use a biophysical model to investigate the different roles of local and long-range inhibition in the respiratory network, a key component of which is the pre-Bötzinger complex inspiratory microcircuit. Increasing inhibition within the microcircuit results in a limited number of out-of-phase neurons before rhythmicity and synchrony degenerate. Thus unstructured local inhibition is destabilizing and cannot support the generation of more than one rhythm. A two-phase rhythm requires restructuring the network into two microcircuits coupled by long-range inhibition in the manner of a half-center. In this context, inhibition leads to greater stability of the two out-of-phase rhythms. We support our computational results with in vitro recordings from mouse pre-Bötzinger complex. Partial excitation block leads to increased rhythmic variability, but this recovers after blockade of inhibition. Our results support the idea that local inhibition in the pre-Bötzinger complex is present to allow for descending control of synchrony or robustness to adverse conditions like hypoxia. We conclude that the balance of inhibition and excitation determines the stability of rhythmogenesis, but with opposite roles within and between areas. These different inhibitory roles may apply to a variety of rhythmic behaviors that emerge in widespread pattern-generating circuits of the nervous system. The roles of inhibition within the pre-Bötzinger complex (preBötC) are a matter of debate. Using a combination of modeling and experiment, we demonstrate that inhibition affects synchrony, period variability, and overall frequency of the preBötC and coupled rhythmogenic networks. This work expands our understanding of ubiquitous motor and cognitive oscillatory networks.
揭示节律生成网络中兴奋与抑制的相互作用仍是神经科学中的一个基本问题。我们使用生物物理模型来研究局部抑制和长程抑制在呼吸网络中的不同作用,呼吸网络的一个关键组成部分是前包钦格复合体吸气微回路。在微回路内增加抑制会导致在节律性和同步性退化之前出现有限数量的不同步神经元。因此,无结构的局部抑制会破坏稳定性,无法支持产生不止一种节律。两相节律需要将网络重组为两个通过长程抑制以半中枢方式耦合的微回路。在这种情况下,抑制会导致两种不同步节律具有更高的稳定性。我们用来自小鼠前包钦格复合体的体外记录来支持我们的计算结果。部分兴奋阻断会导致节律变异性增加,但在抑制被阻断后这种情况会恢复。我们的结果支持这样一种观点,即前包钦格复合体内的局部抑制是为了允许对同步性进行下行控制或增强对缺氧等不利条件的耐受性。我们得出结论,抑制和兴奋的平衡决定了节律发生的稳定性,但在区域内和区域间具有相反的作用。这些不同的抑制作用可能适用于神经系统广泛的模式生成回路中出现的各种节律性行为。前包钦格复合体(preBötC)内抑制的作用一直存在争议。通过结合建模和实验,我们证明抑制会影响preBötC以及耦合的节律生成网络的同步性、周期变异性和整体频率。这项工作扩展了我们对普遍存在的运动和认知振荡网络的理解。