Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, S75121, Sweden.
College of Civil Engineering and Mechanics, Yanshan University, Qin Huangdao, Hebei, 066004, China.
Sci Rep. 2017 Jun 14;7(1):3520. doi: 10.1038/s41598-017-02617-z.
We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H. But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H at high pressure. The electronic structural study on fcc type Pd RhH indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.
我们通过密度泛函理论(DFT)研究了 Pd-氢化物和 Pd-Rh 氢化物系统在高达 50 GPa 的高压下的形成可能性。计算证实,面心立方(fcc)结构的 PdH 在压缩下不稳定,会分解为 fcc-PdH 和 H。但在钯参与反应的情况下,它可以在高压下形成。我们还指出了为什么 PdH 不能在实验中合成的一个可能原因,因为 PdH 最容易在环境到更高压力下的 Pd 和 H 环境中形成。掺入 Rh 后,25%和 75%掺杂的 Pd-Rh 二氢化物在 fcc 结构中稳定,50%掺杂的在四方结构中稳定,并且可以在高压下由 Pd、Rh 和 H 形成。对 fcc 型 Pd-RhH 的电子结构研究表明,随着 Pd 从 x=0 增加到 1,电子和结构从金属转变为半金属。