Bazhlekova Emilia, Jin Bangti, Lazarov Raytcho, Zhou Zhi
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bl. 8, 1113 Sofia, Bulgaria.
Department of Computer Science, University College London, Gower Street, London, WC1E 6BT UK.
Numer Math (Heidelb). 2015;131(1):1-31. doi: 10.1007/s00211-014-0685-2. Epub 2014 Nov 26.
We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data [Formula: see text], including [Formula: see text]. A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.
我们研究了一个广义二阶流体的瑞利 - 斯托克斯问题,该问题在时间上涉及黎曼 - 刘维尔分数阶导数,并对该问题在连续、空间半离散和全离散形式下进行了分析。我们建立了光滑和非光滑初始数据([公式:见正文])(包括([公式:见正文]))的齐次问题的索伯列夫正则性。开发了一种使用连续分段线性有限元的空间半离散伽辽金格式,并推导了有限元逼近关于初始数据正则性的最优误差估计。此外,还开发了基于向后欧拉方法和二阶向后差分方法以及相关卷积求积的两种全离散格式,并推导了光滑和非光滑初始数据的全离散逼近的最优误差估计。给出了具有光滑和非光滑初始数据的一维和二维示例的数值结果,以说明该方法的有效性,并验证收敛理论。