Suppr超能文献

用于对流扩散方程有限元近似的基于边的非线性扩散及其与代数通量校正格式的关系。

Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.

作者信息

Barrenechea Gabriel R, Burman Erik, Karakatsani Fotini

机构信息

Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH UK.

Department of Mathematics, University College London, Gower Street, London, WC1E 6BY UK.

出版信息

Numer Math (Heidelb). 2017;135(2):521-545. doi: 10.1007/s00211-016-0808-z. Epub 2016 May 7.

Abstract

For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.

摘要

对于使用分段仿射连续有限元逼近对流扩散方程的情况,提出了一种基于边的新型非线性扩散算子,使得该格式满足离散最大值原理。该扩散算子被证明是利普希茨连续且保持线性的。利用这些性质,我们进行了完整的稳定性和误差分析,在扩散主导区域,该分析表明解的存在性、唯一性和最优收敛性。接着回顾了代数通量校正方法,并且我们表明当前方法可解释为针对通量限制器的特定定义的代数通量校正方法。在二维空间的一些数值测试案例上展示了该方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b082/5445553/19d25f3430dc/211_2016_808_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验