Barrenechea Gabriel R, Burman Erik, Karakatsani Fotini
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH UK.
Department of Mathematics, University College London, Gower Street, London, WC1E 6BY UK.
Numer Math (Heidelb). 2017;135(2):521-545. doi: 10.1007/s00211-016-0808-z. Epub 2016 May 7.
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
对于使用分段仿射连续有限元逼近对流扩散方程的情况,提出了一种基于边的新型非线性扩散算子,使得该格式满足离散最大值原理。该扩散算子被证明是利普希茨连续且保持线性的。利用这些性质,我们进行了完整的稳定性和误差分析,在扩散主导区域,该分析表明解的存在性、唯一性和最优收敛性。接着回顾了代数通量校正方法,并且我们表明当前方法可解释为针对通量限制器的特定定义的代数通量校正方法。在二维空间的一些数值测试案例上展示了该方法的性能。