Winkelmann Günther
Institut für Mikrobiologie & Biotechnology, Universität Tübingen, Auf der Morgenstelle 28, Tübingen, Germany.
Biometals. 2017 Aug;30(4):559-564. doi: 10.1007/s10534-017-0026-x. Epub 2017 Jun 14.
Most fungi are known to synthesize siderophores under iron limitation. However, arbuscular mycorrhizal fungi (AM fungi) have so far not been reported to produce siderophores, although their metabolism is iron-dependent. In an approach to isolate siderophores from AM fungi, we have grown plants of Tagetes patula nana in the presence of spores from AM fungi of the genus Glomus (G. etunicatum, G. mossae & unidentified Glomus sp.) symbiotically under iron limitation and sterile conditions. A siderophore was isolated from infected roots after 2-3 weeks of growth in pots containing low-iron sand with Hoagland solution. HPLC analysis of the root cell lysate revealed a peak at a retention time of 6.7 min which showed iron-binding properties in a chrome azurol S test. The compound was isolated by preparative HPLC and the structure was determined by high resolution electrospray FTICR-MS and GC/MS analysis of the hydrolysis products. From an observed absolute mass to charge ratio (m/z) of 401.11925 [M+H] with a relative mass error of ∆ = 0.47 ppm an elemental composition of CHNO [M+H] was derived, suggesting a molecular weight of 400 Da for glomuferrin. Corresponnding ion masses of m/z 423.10 and m/z 439.06 were asigned to the Na-adduct and K-adduct respectively. A mass of 455.03836 confirmed an Fe- complex with an elemental composition of CHNOFe (∆ = 0.15 ppm). GC/MS analysis of the HCl lysate (6 N HCL, 12 h) revealed 1,4 butanediamine. Thus the proposed structure of the isolated siderophore from Glomus species consisted of 1,4 butanediamine amidically linked to two dehydrated citrate residues, similar to the previously identified bis-amidorhizoferrin. Thus, the isolated siderophore (glomuferrin) is a member of the rhizoferrin family previously isolated from fungi of the Mucorales (Zygomycetes).
已知大多数真菌在铁限制条件下会合成铁载体。然而,丛枝菌根真菌(AM真菌)尽管其代谢依赖铁,但迄今为止尚未有报道称其能产生铁载体。为了从AM真菌中分离铁载体,我们在铁限制和无菌条件下,使矮生孔雀草植株与球囊霉属(G. etunicatum、G. mossae及未鉴定的球囊霉属物种)的AM真菌孢子共生生长。在装有低铁砂并添加霍格兰溶液的花盆中生长2 - 3周后,从受感染的根中分离出一种铁载体。对根细胞裂解物的HPLC分析显示,在保留时间为6.7分钟处有一个峰,该峰在铬天青S试验中表现出铁结合特性。通过制备型HPLC分离该化合物,并通过对水解产物的高分辨率电喷雾傅里叶变换离子回旋共振质谱(FTICR-MS)和气相色谱/质谱(GC/MS)分析确定其结构。从观察到的绝对质荷比(m/z)为401.11925 [M + H],相对质量误差∆ = 0.47 ppm,得出元素组成为CHNO [M + H],这表明球囊铁载体的分子量为400 Da。相应的m/z 423.10和m/z 439.06的离子质量分别归属于钠加合物和钾加合物。质量为455.03836证实了一种铁络合物,其元素组成为CHNOFe(∆ = 0.15 ppm)。对HCl裂解物(6 N HCl,12小时)的GC/MS分析显示有1,4 - 丁二胺。因此,从球囊霉属物种中分离出的铁载体的推测结构由1,4 - 丁二胺通过酰胺键连接到两个脱水柠檬酸残基组成,类似于先前鉴定的双酰胺根铁载体。因此,分离出的铁载体(球囊铁载体)是先前从毛霉目(接合菌纲)真菌中分离出的根铁载体家族的一员。