Gryganskyi Andrii P, Golan Jacob, Muszewska Anna, Idnurm Alexander, Dolatabadi Somayeh, Mondo Stephen J, Kutovenko Vira B, Kutovenko Volodymyr O, Gajdeczka Michael T, Anishchenko Iryna M, Pawlowska Julia, Tran Ngoc Vinh, Ebersberger Ingo, Voigt Kerstin, Wang Yan, Chang Ying, Pawlowska Teresa E, Heitman Joseph, Vilgalys Rytas, Bonito Gregory, Benny Gerald L, Smith Matthew E, Reynolds Nicole, James Timothy Y, Grigoriev Igor V, Spatafora Joseph W, Stajich Jason E
Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA.
Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
Microorganisms. 2023 Jul 18;11(7):1830. doi: 10.3390/microorganisms11071830.
The first genome sequenced of a eukaryotic organism was for , as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla and , were sequenced. The genome for was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal versus the primarily mycoparasitic or animal-associated parasites and commensals in the . Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
1996年报道了首个真核生物的基因组测序,但直到10多年后,接合菌纲真菌(目前被归为毛霉门和虫霉门的早期分化陆生真菌)才进行测序。毛霉的基因组于2008年完成测序;目前,已对1000多个接合菌纲真菌的基因组进行了测序。这些早期分化陆生真菌的基因组数据揭示了两个主要进化枝之间的深度系统发育分离——主要是与植物相关的腐生菌和菌根菌,与主要是菌寄生菌或与动物相关的寄生菌和共生菌在虫霉门中的分离。基因组研究为这些真菌如何适应陆地生活的挑战而进化提供了许多有价值的见解,包括对光和重力感知的适应、菌丝生长的发育以及与首批陆生植物的共存。基因组序列数据促进了对基因组结构的研究,包括基因组重复和水平基因转移事件的历史、交配型基因座、核糖体DNA基因和转座元件的分布与组织、甲基化过程以及对各种工业应用有用的基因。在土壤腐生菌和致病真菌中也检测到了致病基因和特殊次生代谢产物。在几个接合菌纲真菌基因组项目中发现了新型内共生细菌和病毒。总体而言,基因组信息有助于解决大量研究问题,从接合菌纲真菌在生命进化树和自然生态系统中的位置,到应用生物技术和医学问题。