Suppr超能文献

构建由 BiWO/Au/CdS 纳米结构组成的全固态人工 Z 型体系用于光催化 CO 还原为可再生碳氢燃料。

Construction of an all-solid-state artificial Z-scheme system consisting of BiWO/Au/CdS nanostructure for photocatalytic CO reduction into renewable hydrocarbon fuel.

机构信息

National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China. Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, People's Republic of China. Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093, People's Republic of China.

出版信息

Nanotechnology. 2017 Jul 7;28(27):274002. doi: 10.1088/1361-6528/aa6bb5.

Abstract

An all-solid-state BiWO/Au/CdS Z-scheme system was constructed for the photocatalytic reduction of CO into methane in the presence of water vapor. This Z-scheme consists of ultrathin BiWO nanoplates and CdS nanoparticles as photocatalysts, and a Au nanoparticle as a solid electron mediator offering a high speed charge transfer channel and leading to more efficient spatial separation of electron-hole pairs. The photo-generated electrons from the conduction band (CB) of BiWO transfer to the Au, and then release to the valence band (VB) of CdS to recombine with the holes of CdS. It allows the electrons remaining in the CB of CdS and holes in the VB of BiWO to possess strong reduction and oxidation powers, respectively, leading the BiWO/Au/CdS to exhibit high photocatalytic reduction of CO, relative to bare BiWO, BiWO/Au, and BiWO/CdS. The depressed hole density on CdS also enhances the stability of the CdS against photocorrosion.

摘要

构建了一种全固态 BiWO/Au/CdSZ 型体系,用于在水蒸气存在下光催化还原 CO 生成甲烷。该 Z 型体系由超薄的 BiWO 纳米片和 CdS 纳米颗粒作为光催化剂,以及 Au 纳米颗粒作为固体电子介体组成,提供了高速电荷转移通道,导致电子-空穴对更有效地空间分离。BiWO 的导带 (CB) 中的光生电子转移到 Au,然后释放到 CdS 的价带 (VB) 中,与 CdS 的空穴复合。这使得留在 CdS 的 CB 中的电子和 BiWO 的 VB 中的空穴分别具有很强的还原和氧化能力,从而使 BiWO/Au/CdS 相对于裸 BiWO、BiWO/Au 和 BiWO/CdS 表现出更高的 CO 光催化还原性能。CdS 上的空穴密度降低也增强了 CdS 对光腐蚀的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验