Nisar Muhammad, Khan Niqab, Qadir Muhammad I, Shah Zeban
Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción 4070129, Chile.
Centro de Energía, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción 4070129, Chile.
Nanomaterials (Basel). 2025 Jun 25;15(13):984. doi: 10.3390/nano15130984.
Titanium dioxide (TiO) has been widely used as a potential candidate for the production of green hydrogen using the artificial photosynthesis approach. However, the wide bandgap (∼3.3 eV) of anatase TiO makes it difficult to absorb a large fraction of the solar radiation reaching the Earth, thus providing a low photocatalytic activity. Anatase TiO absorbs only 4% of solar radiation, which can be improved by engineering its bandgap to enhance absorption in the visible region. In the literature, many strategies have been adopted to improve the photocatalytic activity of TiO, such as metal and non-metal doping and heterojunctions. These techniques have shown incredible enhancement in visible light absorption and improved photocatalytic activity due to their ability to lower the bandgap of pure TiO semiconductors. This review highlights different techniques like doping, heterojunctions, acidic modification, creating oxygen vacancies, and temperature- and pressure-dependence, which have improved the photochemical response of TiO by improving charge-transfer efficiencies. Additionally, the charge-transfer mechanism and enhancement in the photochemical response of TiO is discussed in each portion separately.
二氧化钛(TiO₂)作为利用人工光合作用生产绿色氢气的潜在候选材料已被广泛应用。然而,锐钛矿型TiO₂的宽带隙(约3.3电子伏特)使其难以吸收到达地球的大部分太阳辐射,从而导致光催化活性较低。锐钛矿型TiO₂仅吸收4%的太阳辐射,可通过调整其带隙以增强在可见光区域的吸收来加以改善。在文献中,已经采用了许多策略来提高TiO₂的光催化活性,如金属和非金属掺杂以及异质结。由于这些技术能够降低纯TiO₂半导体的带隙,它们在可见光吸收和光催化活性方面都有了显著提高。本综述重点介绍了不同的技术,如掺杂、异质结、酸性改性、制造氧空位以及温度和压力依赖性,这些技术通过提高电荷转移效率改善了TiO₂的光化学反应。此外,还分别在每个部分讨论了TiO₂的电荷转移机制和光化学反应增强情况。