Suppr超能文献

基于新型四元硫属化物/还原氧化石墨烯的非对称超级电容器,具有高能量密度。

Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density.

机构信息

School of Materials Science and Nanotechnology, ‡Thinfilm and Nanoscience Laboratory, Department of Physics, and §Department of Metallurgical and Material Engineering, Jadavpur University , Kolkata 700032, India.

出版信息

ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22652-22664. doi: 10.1021/acsami.7b00437. Epub 2017 Jun 28.

Abstract

In this work we have synthesized quaternary chalcogenide CuNiSnS (QC) nanoparticles grown in situ on 2D reduced graphene oxide (rGO) for application as anode material of solid-state asymmetric supercapacitors (ASCs). Thorough characterization of the synthesized composite validates the proper phase, stoichiometry, and morphology. Detailed electrochemical study of the electrode materials and ASCs has been performed. The as-fabricated device delivers an exceptionally high areal capacitance (655.1 mF cm), which is much superior to that of commercial micro-supercapacitors. Furthermore, a remarkable volumetric capacitance of 16.38 F cm is obtained at a current density of 5 mA cm combined with a very high energy density of 5.68 mW h cm, which is comparable to that of commercially available lithium thin film batteries. The device retains 89.2% of the initial capacitance after running for 2000 cycles, suggesting its long-term capability. Consequently, the enhanced areal and volumetric capacitances combined with decent cycle stability and impressive energy density endow the uniquely decorated QC/rGO composite material as a promising candidate in the arena of energy storage devices. Moreover, CuNiSnS being a narrow band gap photovoltaic material, this work offers a novel protocol for the development of self-charging supercapacitors in the days to come.

摘要

在这项工作中,我们合成了原位生长在二维还原氧化石墨烯 (rGO) 上的四元硫属化物 CuNiSnS (QC) 纳米粒子,将其用作固态非对称超级电容器 (ASC) 的阳极材料。对合成复合材料的彻底表征验证了适当的相、化学计量和形态。对电极材料和 ASC 进行了详细的电化学研究。所制造的器件具有出色的比面积电容 (655.1 mF cm),远高于商用微超级电容器。此外,在 5 mA cm 的电流密度下,还获得了高达 16.38 F cm 的体积电容,再结合非常高的能量密度 5.68 mW h cm,与市售的锂薄膜电池相当。该器件在运行 2000 次循环后保留了初始电容的 89.2%,表明其具有长期能力。因此,增强的比面积和体积电容以及良好的循环稳定性和令人印象深刻的能量密度使独特装饰的 QC/rGO 复合材料成为储能设备领域有前途的候选材料。此外,由于 CuNiSnS 是一种窄带隙光伏材料,这项工作为未来自充电超级电容器的发展提供了一种新的方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验