Ghosh Anima, Yadav Shyam Narayan Singh, Tsai Ming-Hsiu, Dubey Abhishek, Lin Chih-Ting, Gwo Shangjr, Yen Ta-Jen
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan R.O.C.
Department of Physics, School of Sciences and Humanities, SR University, Warangal 506371, India.
ACS Appl Mater Interfaces. 2024 Mar 6;16(9):12033-12041. doi: 10.1021/acsami.3c17462. Epub 2024 Feb 26.
The incorporation of plasmonic metal nanostructures into semiconducting chalcogenides in the form of core-shell structures provides a promising approach to enhancing the performance of photodetectors. In this study, we combined Au nanoparticles with newly developed copper-based chalcogenides CuNiSnS (Au/CNTS) to achieve an ultrahigh optoelectronic response in the visible regime. The high-quality Au/CNTS core-shell nanocrystals (NCs) were synthesized by developing a unique colloidal hot-injection method, which allowed for excellent control over sizes, shapes, and elemental compositions. The as-synthesized Au/CNTS hybrid core-shell NCs exhibited enhanced optical absorption, carrier extraction efficiency, and improved photosensing performance owing to the plasmonic-induced resonance energy transfer effect of the Au core. This effect led to a significant increase in the carrier density of the Au/CNTS NCs, resulting in a measured responsivity of 1.2 × 10 AW, a specific detectivity of 6.2 × 10 Jones, and an external quantum efficiency of 3.8 × 10 % at an incident power density of 318.5 μW cm. These results enlighten a new era in the development of plasmonic core-shell nanostructure-based visible photodetectors.
将等离子体金属纳米结构以核壳结构的形式引入到半导体硫族化物中,为提高光电探测器的性能提供了一种很有前景的方法。在本研究中,我们将金纳米颗粒与新开发的铜基硫族化物CuNiSnS(Au/CNTS)相结合,以在可见光范围内实现超高的光电响应。通过开发一种独特的胶体热注入法合成了高质量的Au/CNTS核壳纳米晶体(NCs),该方法能够对尺寸、形状和元素组成进行出色的控制。由于金核的等离子体诱导共振能量转移效应,所合成的Au/CNTS混合核壳NCs表现出增强的光吸收、载流子提取效率以及改善的光传感性能。这种效应导致Au/CNTS NCs的载流子密度显著增加,在入射功率密度为318.5 μW cm时,测得的响应度为1.2×10 AW,比探测率为6.2×10 Jones,外量子效率为3.8×10%。这些结果开启了基于等离子体核壳纳米结构的可见光探测器发展的新纪元。