Suppr超能文献

时变社区网络上的社交传染。

Social contagions on time-varying community networks.

机构信息

Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.

Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.

出版信息

Phys Rev E. 2017 May;95(5-1):052306. doi: 10.1103/PhysRevE.95.052306. Epub 2017 May 9.

Abstract

Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.

摘要

时变社区结构广泛存在于真实网络中。然而,以前关于传播动力学的研究很少考虑到这一特征,特别是关于社交传染的研究。为了研究时变社区结构对社交传染的影响,我们基于活动驱动的网络模型,提出了一种时变社区网络上的非马尔可夫社交传染模型。建立了一个均值场理论来分析所提出的模型。通过理论分析和数值模拟,发现了行为采纳过程的两个层次特征。也就是说,当社区强度较大时,行为很容易在一个社区中传播,而在另一个社区中,传播仅发生在较高的行为信息传输率下。同时,在时空演化过程中,行为采纳存在层次顺序。此外,在不同的信息传输率下,随着社区强度的增加,整个网络的最终采纳比例呈现出三种不同的模式。在合适的传输率范围内,可以找到一个最优的社区强度,使得最终的采纳比例最大化。最后,与平均活动势相比,社交传染的促进或抑制受活跃节点生成的边数的影响更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验