Wang Wei, Liu Quan-Hui, Liang Junhao, Hu Yanqing, Zhou Tao
Cybersecurity Research Institute, Sichuan University, Chengdu 610065, China.
Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.
Phys Rep. 2019 Aug 2;820:1-51. doi: 10.1016/j.physrep.2019.07.001. Epub 2019 Jul 29.
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phenomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.
在实际系统中,疾病、行为和信息的传播很少相互独立,而是在强烈的相互作用下共同演化。为了揭示其动力学机制,网络协同演化传播的时空演化模式和临界现象极为重要,这为我们控制疫情传播、预测社会系统中的集体行为等提供了理论基础。因此,复杂网络中的协同演化传播动力学在许多学科中引起了广泛关注。在这篇综述中,我们介绍了协同演化传播动力学研究的最新进展,重点强调了统计力学和网络科学视角下的贡献。详细阐述了四种具有代表性的协同演化传播机制(包括生物传染、社会传染、疫情认知和疫情资源的协同演化)的理论方法、临界现象、相变、相互作用机制以及网络拓扑的影响,并讨论了该领域面临的挑战以及未来研究的开放性问题。