Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic.
Phys Rev E. 2017 May;95(5-1):052136. doi: 10.1103/PhysRevE.95.052136. Epub 2017 May 23.
The local time of a stochastic process quantifies the amount of time that sample trajectories x(τ) spend in the vicinity of an arbitrary point x. For a generic Hamiltonian, we employ the phase-space path-integral representation of random walk transition probabilities in order to quantify the properties of the local time. For time-independent systems, the resolvent of the Hamiltonian operator proves to be a central tool for this purpose. In particular, we focus on the local times of Lévy random walks (Lévy flights), which correspond to fractional diffusion equations.
随机过程的局域时量化了样本轨迹 x(τ) 在任意点 x 附近停留的时间量。对于一般的哈密顿量,我们采用相空间路径积分表示来量化随机游走跃迁概率的性质。对于时不变系统,哈密顿算符的预解式被证明是实现这一目的的核心工具。特别是,我们关注的是 Lévy 随机游走( Lévy 飞行)的局域时,它对应于分数扩散方程。