Suppr超能文献

Lévy 随机游走的局域时:路径积分方法。

Local time of Lévy random walks: A path integral approach.

机构信息

Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic.

出版信息

Phys Rev E. 2017 May;95(5-1):052136. doi: 10.1103/PhysRevE.95.052136. Epub 2017 May 23.

Abstract

The local time of a stochastic process quantifies the amount of time that sample trajectories x(τ) spend in the vicinity of an arbitrary point x. For a generic Hamiltonian, we employ the phase-space path-integral representation of random walk transition probabilities in order to quantify the properties of the local time. For time-independent systems, the resolvent of the Hamiltonian operator proves to be a central tool for this purpose. In particular, we focus on the local times of Lévy random walks (Lévy flights), which correspond to fractional diffusion equations.

摘要

随机过程的局域时量化了样本轨迹 x(τ) 在任意点 x 附近停留的时间量。对于一般的哈密顿量,我们采用相空间路径积分表示来量化随机游走跃迁概率的性质。对于时不变系统,哈密顿算符的预解式被证明是实现这一目的的核心工具。特别是,我们关注的是 Lévy 随机游走( Lévy 飞行)的局域时,它对应于分数扩散方程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验