Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
Phys Rev E. 2017 May;95(5-1):052133. doi: 10.1103/PhysRevE.95.052133. Epub 2017 May 22.
We apply a generalized Kibble-Zurek out-of-equilibrium scaling ansatz to simulated annealing when approaching the spin-glass transition at temperature T=0 of the two-dimensional Ising model with random J=±1 couplings. Analyzing the spin-glass order parameter and the excess energy as functions of the system size and the annealing velocity in Monte Carlo simulations with Metropolis dynamics, we find scaling where the energy relaxes slower than the spin-glass order parameter, i.e., there are two different dynamic exponents. The values of the exponents relating the relaxation time scales to the system length, τ∼L^{z}, are z=8.28±0.03 for the relaxation of the order parameter and z=10.31±0.04 for the energy relaxation. We argue that the behavior with dual time scales arises as a consequence of the entropy-driven ordering mechanism within droplet theory. We point out that the dynamic exponents found here for T→0 simulated annealing are different from the temperature-dependent equilibrium dynamic exponent z_{eq}(T), for which previous studies have found a divergent behavior: z_{eq}(T→0)→∞. Thus, our study shows that, within Metropolis dynamics, it is easier to relax the system to one of its degenerate ground states than to migrate at low temperatures between regions of the configuration space surrounding different ground states. In a more general context of optimization, our study provides an example of robust dense-region solutions for which the excess energy (the conventional cost function) may not be the best measure of success.
我们将广义的 Kibble-Zurek 非平衡标度假设应用于模拟退火,当接近二维伊辛模型中温度为 T=0 的随机 J=±1 耦合的自旋玻璃相变时。在具有 Metropolis 动力学的蒙特卡罗模拟中,我们分析了自旋玻璃有序参数和过剩能作为系统大小和退火速度的函数,发现了能量弛豫比自旋玻璃有序参数慢的标度,即存在两个不同的动态指数。将弛豫时间标度与系统长度联系起来的指数的值,τ∼L^{z},对于有序参数的弛豫,z=8.28±0.03,对于能量弛豫,z=10.31±0.04。我们认为,双时间标度的行为是由于液滴理论中的熵驱动有序机制引起的。我们指出,这里对于 T→0 模拟退火找到的动态指数与依赖于温度的平衡动态指数 z_{eq}(T)不同,以前的研究发现了发散的行为:z_{eq}(T→0)→∞。因此,我们的研究表明,在 Metropolis 动力学中,系统弛豫到其简并基态之一比在低温下在不同基态周围的构型空间区域之间迁移更容易。在更一般的优化上下文中,我们的研究提供了一个稳健的密集区域解的例子,其中过剩能(传统的成本函数)可能不是成功的最佳度量。