Suppr超能文献

调控线粒体疾病中的线粒体自噬

Modulating Mitophagy in Mitochondrial Disease.

机构信息

Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom.

Sheffield Institute for Translational Neuroscience, Neuroscience Department, University of Sheffield, United Kingdom.

出版信息

Curr Med Chem. 2018;25(40):5597-5612. doi: 10.2174/0929867324666170616101741.

Abstract

Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins. Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of disorders that can present at any age and can affect any type of tissue. The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional and redundant mitochondria through a specific quality control mechanism termed mitophagy. Mitochondria could be targeted for autophagic degradation for a variety of reasons including basal turnover for recycling, starvation induced degradation, and degradation due to damage. While the core autophagic machinery is highly conserved and common to most pathways, the signaling pathways leading to the selective degradation of damaged mitochondria are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2 mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require PI3K. Autophagy and mitophagy play an important role in human disease and hence could serve as therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders. Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin) and may affect this by activating the AMP-activated protein kinase signaling pathways. Furthermore, we reviewed the data available on supplements, such as Coenzyme Q and the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by benefiting mitochondrial function.

摘要

线粒体疾病可能源于母系遗传的线粒体 DNA (mtDNA) 突变或核基因编码的线粒体蛋白突变。它们的双基因组性质使线粒体疾病成为一组非常异质的疾病,可发生于任何年龄,并可影响任何类型的组织。自噬溶酶体降解途径通过一种称为线粒体自噬的特定质量控制机制,在清除功能失调和多余的线粒体方面发挥着重要作用。线粒体可能由于多种原因而被靶向进行自噬降解,包括用于回收的基础周转率、饥饿诱导的降解以及由于损伤导致的降解。虽然核心自噬机制高度保守,并且是大多数途径所共有的,但导致受损线粒体选择性降解的信号通路仍不完全清楚。由于营养饥饿引起的 1 型线粒体自噬依赖于 PI3K(磷酸肌醇 3-激酶)来形成自噬体,但不依赖于线粒体自噬蛋白 PINK1(PTEN 诱导的假定激酶 1)和 Parkin。而由于损伤而发生的 2 型线粒体自噬依赖于 PINK1 和 Parkin,但不需要 PI3K。自噬和线粒体自噬在人类疾病中发挥着重要作用,因此可以作为治疗线粒体和神经退行性疾病的治疗靶点。因此,我们综述了已知的自噬调节剂药物(AICAR 和二甲双胍),并通过激活 AMP 激活的蛋白激酶信号通路来影响这一点。此外,我们还综述了补充剂(如辅酶 Q 和醌 Idebenone)的数据,我们断言这些补充剂通过改善线粒体功能来挽救线粒体疾病中的线粒体自噬增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验