Suppr超能文献

HGPEC:一款用于基于异质网络上的随机游走预测新型疾病-基因和疾病-疾病关联以及证据收集的Cytoscape应用程序。

HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.

作者信息

Le Duc-Hau, Pham Van-Huy

机构信息

Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam.

Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam.

出版信息

BMC Syst Biol. 2017 Jun 15;11(1):61. doi: 10.1186/s12918-017-0437-x.

Abstract

BACKGROUND

Finding gene-disease and disease-disease associations play important roles in the biomedical area and many prioritization methods have been proposed for this goal. Among them, approaches based on a heterogeneous network of genes and diseases are considered state-of-the-art ones, which achieve high prediction performance and can be used for diseases with/without known molecular basis.

RESULTS

Here, we developed a Cytoscape app, namely HGPEC, based on a random walk with restart algorithm on a heterogeneous network of genes and diseases. This app can prioritize candidate genes and diseases by employing a heterogeneous network consisting of a network of genes/proteins and a phenotypic disease similarity network. Based on the rankings, novel disease-gene and disease-disease associations can be identified. These associations can be supported with network- and rank-based visualization as well as evidences and annotations from biomedical data. A case study on prediction of novel breast cancer-associated genes and diseases shows the abilities of HGPEC. In addition, we showed prominence in the performance of HGPEC compared to other tools for prioritization of candidate disease genes.

CONCLUSIONS

Taken together, our app is expected to effectively predict novel disease-gene and disease-disease associations and support network- and rank-based visualization as well as biomedical evidences for such the associations.

摘要

背景

寻找基因与疾病以及疾病与疾病之间的关联在生物医学领域发挥着重要作用,并且已经提出了许多用于此目的的优先级排序方法。其中,基于基因和疾病的异质网络的方法被认为是最先进的方法,这些方法具有较高的预测性能,可用于有/无已知分子基础的疾病。

结果

在此,我们基于基因和疾病的异质网络上的带重启的随机游走算法开发了一个Cytoscape应用程序,即HGPEC。该应用程序可以通过使用由基因/蛋白质网络和表型疾病相似性网络组成的异质网络来对候选基因和疾病进行优先级排序。基于这些排名,可以识别新的疾病-基因和疾病-疾病关联。这些关联可以通过基于网络和排名的可视化以及生物医学数据的证据和注释来支持。一项关于预测新型乳腺癌相关基因和疾病的案例研究展示了HGPEC的能力。此外,与其他用于对候选疾病基因进行优先级排序的工具相比,我们展示了HGPEC在性能上的优势。

结论

综上所述,我们的应用程序有望有效地预测新的疾病-基因和疾病-疾病关联,并支持基于网络和排名的可视化以及此类关联的生物医学证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a6/5472867/0327fd4b26a3/12918_2017_437_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验