Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9077-9081. doi: 10.1002/anie.201704147. Epub 2017 Jun 28.
We rationally engineered an elegant entropy-driven DNA nanomachine with three-dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy-driven catalytic reaction of intramolecular toehold-mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye-labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction-based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity-induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells.
我们合理设计了一种具有三维轨道的优雅熵驱动 DNA 纳米机器人,并将其应用于细胞内 miRNAs 成像。所提出的纳米机器人通过与目标 miRNA 结合而被激活,从而驱动与金纳米颗粒相连的附着腿,该金纳米颗粒上带有高密度的 DNA 底物。通过分子内碱基错配介导的链迁移的熵驱动催化反应,纳米机器人在 DNA 轨道上自主且连续地行走,导致 DNA 底物的连续拆卸,同时由于从 DNA 轨道上特异性释放带有染料标记的底物,荧光信号得以恢复。与传统基于分子间反应的金纳米颗粒设计相比,我们的纳米机器人在灵敏度和动力学方面表现更优,这归因于近场诱导的分子内反应增强了工作 DNA 组分的局部有效浓度。此外,该纳米机器人还被应用于活细胞内的 miRNA 成像。