Suppr超能文献

杀菌性肽聚糖识别蛋白通过阻断呼吸链和增加中心碳代谢在大肠杆菌中诱导氧化应激。

Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

作者信息

Kashyap Des R, Kuzma Marcin, Kowalczyk Dominik A, Gupta Dipika, Dziarski Roman

机构信息

Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA.

出版信息

Mol Microbiol. 2017 Sep;105(5):755-776. doi: 10.1111/mmi.13733. Epub 2017 Jul 3.

Abstract

Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn through influx of extracellular Zn ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy.

摘要

哺乳动物肽聚糖识别蛋白(PGRPs)通过同时诱导细菌中的氧化应激、硫醇应激和金属应激反应来杀死革兰氏阳性菌和革兰氏阴性菌。然而,PGRPs诱导这些杀菌应激反应的代谢途径尚不清楚。我们筛选了大肠杆菌基因敲除突变体的Keio文库,发现删除呼吸链黄素蛋白或三羧酸(TCA)循环相关基因会导致大肠杆菌对PGRP杀伤的抗性增加。PGRP诱导的杀伤作用依赖于过氧化氢的产生,这需要从中心碳分解代谢(糖酵解和TCA循环)为呼吸链氧化还原酶增加NADH的供应,并且受cAMP-Crp调控。杀菌性PGRP会导致呼吸作用迅速下降,这表明过氧化氢产生增加的主要来源是呼吸链受阻以及电子从NADH氧化还原酶转移到氧气。CpxRA双组分系统是PGRP诱导的氧化应激的负调节因子。相比之下,PGRP诱导的硫醇应激(硫醇耗竭)和金属应激(细胞外锌流入导致细胞内游离锌增加)大多独立于氧化应激。因此,操纵细菌中诱导氧化应激、硫醇应激和金属应激的途径可能是设计新型抗菌治疗方法的有用策略。

相似文献

4
How innate immunity proteins kill bacteria and why they are not prone to resistance.
Curr Genet. 2018 Feb;64(1):125-129. doi: 10.1007/s00294-017-0737-0. Epub 2017 Aug 24.
5
Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.
PLoS Pathog. 2014 Jul 17;10(7):e1004280. doi: 10.1371/journal.ppat.1004280. eCollection 2014 Jul.
7
Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity.
Blood. 2005 Oct 1;106(7):2551-8. doi: 10.1182/blood-2005-02-0530. Epub 2005 Jun 14.
9
Mammalian PGRPs: novel antibacterial proteins.
Cell Microbiol. 2006 Jul;8(7):1059-69. doi: 10.1111/j.1462-5822.2006.00726.x.
10
Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan.
Mol Immunol. 2008 May;45(9):2521-30. doi: 10.1016/j.molimm.2008.01.015. Epub 2008 Mar 4.

引用本文的文献

1
Novel Drug-like HsrA Inhibitors Exhibit Potent Narrow-Spectrum Antimicrobial Activities against .
Int J Mol Sci. 2024 Sep 22;25(18):10175. doi: 10.3390/ijms251810175.
2
Mechanisms conferring bacterial cell wall variability and adaptivity.
Biochem Soc Trans. 2024 Oct 30;52(5):1981-1993. doi: 10.1042/BST20230027.
3
DegS protease regulates antioxidant capacity and adaptability to oxidative stress environment in .
Front Cell Infect Microbiol. 2023 Nov 20;13:1290508. doi: 10.3389/fcimb.2023.1290508. eCollection 2023.
4
Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0003622. doi: 10.1128/mmbr.00036-22. Epub 2023 Dec 4.
5
RavA-ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in .
Microbiol Spectr. 2023 Dec 12;11(6):e0173023. doi: 10.1128/spectrum.01730-23. Epub 2023 Oct 20.
8
Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature.
Open Biol. 2022 Oct;12(10):220146. doi: 10.1098/rsob.220146. Epub 2022 Oct 5.
10
Proteomic Investigation of the Antibacterial Mechanism of Cefiderocol against Escherichia coli.
Microbiol Spectr. 2022 Oct 26;10(5):e0109322. doi: 10.1128/spectrum.01093-22. Epub 2022 Aug 18.

本文引用的文献

3
Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage.
Cell Rep. 2015 Nov 3;13(5):968-80. doi: 10.1016/j.celrep.2015.09.059. Epub 2015 Oct 22.
4
Antibiotic efficacy is linked to bacterial cellular respiration.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80. doi: 10.1073/pnas.1509743112. Epub 2015 Jun 22.
5
The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties.
Biochemistry. 2015 Jun 16;54(23):3670-6. doi: 10.1021/acs.biochem.5b00242. Epub 2015 Jun 1.
6
Diagnosing oxidative stress in bacteria: not as easy as you might think.
Curr Opin Microbiol. 2015 Apr;24:124-31. doi: 10.1016/j.mib.2015.01.004. Epub 2015 Feb 6.
7
Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.
Cell Metab. 2015 Feb 3;21(2):249-262. doi: 10.1016/j.cmet.2015.01.008.
9
Unraveling the physiological complexities of antibiotic lethality.
Annu Rev Pharmacol Toxicol. 2015;55:313-32. doi: 10.1146/annurev-pharmtox-010814-124712. Epub 2014 Sep 10.
10
Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.
PLoS Pathog. 2014 Jul 17;10(7):e1004280. doi: 10.1371/journal.ppat.1004280. eCollection 2014 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验