Suppr超能文献

使用不同的log P算法获得的土壤吸附系数预测模型的统计等效性。

Statistical equivalence of prediction models of the soil sorption coefficient obtained using different log P algorithms.

作者信息

Olguin Carlos José Maria, Sampaio Silvio César, Dos Reis Ralpho Rinaldo

机构信息

Graduate Program in Agricultural Engineering (PGEAGRI), Agro-Environmental Sciences Research Group (Grupo de Pesquisa em Ciências Agro-Ambientais - PECAA), Western Paraná State University (Universidade Estadual do Oeste do Paraná - UNIOESTE), Cascavel, Paraná, Brazil.

Graduate Program in Agricultural Engineering (PGEAGRI), Agro-Environmental Sciences Research Group (Grupo de Pesquisa em Ciências Agro-Ambientais - PECAA), Western Paraná State University (Universidade Estadual do Oeste do Paraná - UNIOESTE), Cascavel, Paraná, Brazil.

出版信息

Chemosphere. 2017 Oct;184:498-504. doi: 10.1016/j.chemosphere.2017.06.027. Epub 2017 Jun 9.

Abstract

The soil sorption coefficient normalized to the organic carbon content (K) is a physicochemical parameter used in environmental risk assessments and in determining the final fate of chemicals released into the environment. Several models for predicting this parameter have been proposed based on the relationship between log K and log P. The difficulty and cost of obtaining experimental log P values led to the development of algorithms to calculate these values, some of which are free to use. However, quantitative structure-property relationship (QSPR) studies did not detail how or why a particular algorithm was chosen. In this study, we evaluated several free algorithms for calculating log P in the modeling of log K, using a broad and diverse set of compounds (n = 639) that included several chemical classes. In addition, we propose the adoption of a simple test to verify if there is statistical equivalence between models obtained using different data sets. Our results showed that the ALOGPs, KOWWIN and XLOGP3 algorithms generated the best models for modeling K, and these models are statistically equivalent. This finding shows that it is possible to use the different algorithms without compromising statistical quality and predictive capacity.

摘要

归一化至有机碳含量的土壤吸附系数(K)是一种用于环境风险评估以及确定释放到环境中的化学物质最终归宿的物理化学参数。基于log K与log P之间的关系,已经提出了几种预测该参数的模型。获取实验log P值的难度和成本促使人们开发了一些计算这些值的算法,其中一些是免费使用的。然而,定量结构-性质关系(QSPR)研究并未详细说明如何或为何选择特定的算法。在本研究中,我们使用包括多种化学类别的广泛且多样的化合物集(n = 639),评估了几种用于在log K建模中计算log P的免费算法。此外,我们建议采用一种简单的测试来验证使用不同数据集获得的模型之间是否存在统计等效性。我们的结果表明,ALOGPs、KOWWIN和XLOGP3算法生成了用于K建模的最佳模型,并且这些模型在统计上是等效的。这一发现表明,可以使用不同的算法而不影响统计质量和预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验