Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China.
Molecules. 2022 Aug 31;27(17):5610. doi: 10.3390/molecules27175610.
Perfluorinated and polyfluoroalkyl substances (PFASs) are known for their long-distance migration, bioaccumulation, and toxicity. The transport of PFASs in the environment has been a source of increasing concerned. The organic carbon normalized sorption coefficient (K) is an important parameter from which to understand the distribution behavior of organic matter between solid and liquid phases. Currently, the theoretical prediction research on log K of PFASs is extremely limited. The existing models have limitations such as restricted application fields and unsatisfactory prediction results for some substances. In this study, a quantitative structure-property relationship (QSPR) model was established to predict the log K of PFASs, and the potential mechanism affecting the distribution of PFASs between two phases from the perspective of molecular structure was analyzed. The developed model had sufficient goodness of fit and robustness, satisfying the model application requirements. The molecular weight () related to the hydrophobicity of the compound; lowest unoccupied molecular orbital energy () and maximum average local ionization energy on the molecular surface (), both related to electrostatic properties; and the dipole moment (), related to the polarity of the compound; are the key structural variables that affect the distribution behavior of PFASs. This study carried out a standardized modeling process, and the model dataset covered a comprehensive variety of PFASs. The model can be used to predict the log K of conventional and emerging PFASs effectively, filling the data gap of the log K of uncommon PFASs. The explanation of the mechanism of the model has proven to be of great value for understanding the distribution behavior and migration trends of PFASs between sediment/soil and water, and for estimating the potential environmental risks generated by PFASs.
全氟和多氟烷基物质(PFASs)以其长距离迁移、生物累积和毒性而闻名。PFASs 在环境中的迁移一直是人们越来越关注的问题。有机碳归一化吸附系数(K)是理解有机物质在固液相之间分配行为的重要参数。目前,关于 PFASs 的 log K 的理论预测研究极为有限。现有的模型存在应用领域受限以及对某些物质预测结果不理想等局限性。在本研究中,建立了一个定量结构-性质关系(QSPR)模型来预测 PFASs 的 log K,并从分子结构的角度分析了影响 PFASs 在两相之间分配的潜在机制。所开发的模型具有足够的拟合优度和稳健性,满足模型应用要求。化合物的疏水性相关的分子量();与静电性质相关的最低未占据分子轨道能量()和分子表面上的最大平均局部电离能();以及与化合物极性相关的偶极矩();是影响 PFASs 分配行为的关键结构变量。本研究进行了标准化的建模过程,模型数据集涵盖了广泛的 PFASs 种类。该模型可有效预测常规和新兴 PFASs 的 log K,填补了罕见 PFASs 的 log K 数据空白。模型机制的解释对于理解 PFASs 在沉积物/土壤和水中的分配行为和迁移趋势,以及评估 PFASs 产生的潜在环境风险具有重要价值。