Suppr超能文献

使用夜间脉搏血氧仪实时自动检测呼吸暂停事件。

Real-Time Automatic Apneic Event Detection Using Nocturnal Pulse Oximetry.

出版信息

IEEE Trans Biomed Eng. 2018 Mar;65(3):706-712. doi: 10.1109/TBME.2017.2715405. Epub 2017 Jun 14.

Abstract

OBJECTIVE

Nocturnal pulse oximetry has been proposed as a simpler alternative to polysomnography in diagnosing sleep apnea. However, existing techniques are limited in terms of inability to provide time information on sleep apnea occurrence. This study aimed to propose a new strategy for near real-time automatic detection of apneic events and reliable estimation of apnea-hypopnea index using nocturnal pulse oximetry.

METHODS

Among 230 polysomnographic recordings with apnea-hypopnea index values ranging from 0 to 86.5 events/h, 138 (60%) and the remaining 92 recordings (40%) were categorized as training and test sets, respectively. By extracting the quantitative characteristics caused by the apneic event for the amount and duration of the change in blood oxygen saturation value, we established the criteria to determine the occurrence of apneic event. Regression modeling was used to estimate the apnea-hypopnea index from the apneic event detection results.

RESULTS

The minute-by-minute apneic segment detection exhibited an average accuracy of 91.0% and an average Cohen's kappa coefficient of 0.71. Between the apnea-hypopnea index estimations and reference values, the mean absolute error was 2.30 events/h. The average accuracy of our diagnosis of sleep apnea was 96.7% for apnea-hypopnea index cutoff values of ≥5, 10, 15, and 30 events/h.

CONCLUSION

We developed an effective strategy to detect apneic events by using morphometric characteristics in the fluctuation of blood oxygen saturation values.

SIGNIFICANCE

Our study could be potentially useful in home-based multinight apneic event monitoring for purposes of therapeutic intervention and follow-up study on sleep apnea.

摘要

目的

夜间脉搏血氧仪已被提议作为诊断睡眠呼吸暂停的一种更简单的替代多导睡眠图的方法。然而,现有的技术在提供睡眠呼吸暂停发生的时间信息方面存在局限性。本研究旨在提出一种新策略,用于使用夜间脉搏血氧仪进行睡眠呼吸暂停事件的近实时自动检测和可靠的呼吸暂停低通气指数估计。

方法

在 230 份呼吸暂停低通气指数值范围为 0 至 86.5 事件/小时的多导睡眠图记录中,138 份(60%)和其余 92 份记录(40%)分别归类为训练集和测试集。通过提取由血氧饱和度值变化的幅度和持续时间引起的定量特征,我们建立了确定呼吸暂停事件发生的标准。回归建模用于根据呼吸暂停事件检测结果估计呼吸暂停低通气指数。

结果

每分钟呼吸暂停段检测的平均准确率为 91.0%,平均 Cohen's kappa 系数为 0.71。在呼吸暂停低通气指数估计值与参考值之间,平均绝对误差为 2.30 事件/小时。对于呼吸暂停低通气指数截止值为≥5、10、15 和 30 事件/小时的睡眠呼吸暂停的诊断,我们的平均准确率分别为 96.7%。

结论

我们开发了一种使用血氧饱和度值波动的形态特征来检测呼吸暂停事件的有效策略。

意义

我们的研究可能对基于家庭的多夜呼吸暂停事件监测有潜在的用处,用于治疗干预和睡眠呼吸暂停的后续研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验