Larroza Andrés, Materka Andrzej, López-Lereu María P, Monmeneu José V, Bodí Vicente, Moratal David
Department of Medicine, Universitat de València, Valencia, Spain.
Institute of Electronics, Technical University of Lodz, Lodz, Poland.
Eur J Radiol. 2017 Jul;92:78-83. doi: 10.1016/j.ejrad.2017.04.024. Epub 2017 May 1.
The purpose of this study was to differentiate acute from chronic myocardial infarction using machine learning techniques and texture features extracted from cardiac magnetic resonance imaging (MRI). The study group comprised 22 cases with acute myocardial infarction (AMI) and 22 cases with chronic myocardial infarction (CMI). Cine and late gadolinium enhancement (LGE) MRI were analyzed independently to differentiate AMI from CMI. A total of 279 texture features were extracted from predefined regions of interest (ROIs): the infarcted area on LGE MRI, and the entire myocardium on cine MRI. Classification performance was evaluated by a nested cross-validation approach combining a feature selection technique with three predictive models: random forest, support vector machine (SVM) with Gaussian Kernel, and SVM with polynomial kernel. The polynomial SVM yielded the best classification performance. Receiver operating characteristic curves provided area-under-the-curve (AUC) (mean±standard deviation) of 0.86±0.06 on LGE MRI using 72 features; AMI sensitivity=0.81±0.08 and specificity=0.84±0.09. On cine MRI, AUC=0.82±0.06 using 75 features; AMI sensitivity=0.79±0.10 and specificity=0.80±0.10. We concluded that texture analysis can be used for differentiation of AMI from CMI on cardiac LGE MRI, and also on standard cine sequences in which the infarction is visually imperceptible in most cases.
本研究的目的是利用机器学习技术和从心脏磁共振成像(MRI)中提取的纹理特征来区分急性心肌梗死和慢性心肌梗死。研究组包括22例急性心肌梗死(AMI)患者和22例慢性心肌梗死(CMI)患者。对电影序列和延迟钆增强(LGE)MRI进行独立分析,以区分AMI和CMI。从预定义的感兴趣区域(ROI)提取了总共279个纹理特征:LGE MRI上的梗死区域以及电影序列MRI上的整个心肌。通过将特征选择技术与三种预测模型相结合的嵌套交叉验证方法评估分类性能:随机森林、具有高斯核的支持向量机(SVM)和具有多项式核的SVM。多项式SVM产生了最佳分类性能。使用72个特征时,LGE MRI的受试者工作特征曲线提供的曲线下面积(AUC)(均值±标准差)为0.86±0.06;AMI敏感性=0.81±0.08,特异性=0.84±0.09。在电影序列MRI上,使用75个特征时,AUC=0.82±0.06;AMI敏感性=0.79±0.10,特异性=0.80±0.10。我们得出结论,纹理分析可用于在心脏LGE MRI上以及在大多数情况下梗死在视觉上难以察觉的标准电影序列上区分AMI和CMI。