Suppr超能文献

心脏电影磁共振成像的纹理分析检测慢性心肌梗死患者的非存活节段。

Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.

机构信息

Department of Medicine, Universitat de València, Avda. Blasco Ibáñez 15, 46010, Valencia, Spain.

Unidad de Imagen Cardíaca, ERESA, Marqués de San Juan 6, 46015, Valencia, Spain.

出版信息

Med Phys. 2018 Apr;45(4):1471-1480. doi: 10.1002/mp.12783. Epub 2018 Feb 22.

Abstract

PURPOSE

To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI).

METHODS

This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE ≥ 50%, and viable segments those showing 0 < LGE < 50% transmural extension. Features derived from five texture analysis methods were extracted from the segments on cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance.

RESULTS

The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments.

CONCLUSION

Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach.

摘要

目的

探究纹理分析在心脏电影磁共振成像(MRI)中区分梗死性无活性、活性和远程节段的能力。

方法

本回顾性研究纳入了 50 例慢性心肌梗死患者。数据随机分为训练(30 例)和测试(20 例)集。根据电影和晚期钆增强(LGE)MRI 的 17 节段模型对左心室心肌进行分段。在短轴视图上的 LGE 上识别梗死性心肌区域。无活性节段被确定为那些显示 LGE≥50%的节段,而活性节段被确定为那些显示 0<LGE<50%透壁延伸的节段。从电影图像上的节段中提取五种纹理分析方法得出的特征。使用支持向量机(SVM)分类器,通过不同的纹理特征组合进行训练,以获得提供最佳分类性能的模型。

结果

在测试集中,使用局部二值模式特征(2D+t 方法)实现了最佳分类,其中特征是通过包括电影序列中可用的时间维度的信息来计算的。最佳的总体受试者工作特征曲线(AUC)下面积(AUC)分别为:0.849、检测无活性节段的敏感性为 92%、检测活性节段的敏感性为 72%、检测远程节段的敏感性为 85%。

结论

可以使用纹理分析在电影 MRI 上检测无活性节段,这可能被用作未来旨在通过无钆方法检测梗死心肌的研究的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验