Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
Biotechnol Adv. 2017 Nov 1;35(6):815-831. doi: 10.1016/j.biotechadv.2017.06.003. Epub 2017 Jun 15.
Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with HO as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating HO that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other HO generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.
真菌产生含血红素的过氧化物酶和过氧酶、含黄素的氧化酶和脱氢酶,以及不同的含铜氧化还原酶,这些酶参与木质素和其他难降解化合物的生物降解。过氧化物酶包括经典的木质素过氧化物酶和新的染料脱色过氧化物酶,而过氧酶属于血红素硫醇蛋白酶的一个尚未得到充分研究的超家族。然而,由于担子菌非特异性过氧化物酶能够催化各种区域和立体选择性的单加氧反应,以 HO 作为氧源和最终电子受体,因此具有最高的生物技术应用价值。黄素氧化酶参与木质素和纤维素的降解,生成 HO,激活过氧化物酶并产生羟基自由基。铜氧化还原酶组还包括其他生成 HO 的酶——铜自由基氧化酶——以及迄今为止报道应用最多的经典漆酶。然而,最近描述的溶菌多糖单加氧酶在铜氧化还原酶中引起了最高的关注,因为它们能够氧化分解结晶纤维素,而纤维素的分解仍然是木质纤维素生物炼制厂的主要瓶颈,与木质素降解一起。有趣的是,一些含黄素的脱氢酶也通过直接/间接“为”多糖单加氧酶的激活“提供”电子,在纤维素分解中发挥关键作用。许多上述氧化还原酶已通过合理设计和计算设计与定向进化相结合进行了工程改造,以获得其工业应用所需的选择性、催化效率和稳定性。事实上,使用特定的软件和当前的计算能力,现在可以在生物物理模拟中预测底物进入活性位点的情况,以及生化模拟中的电子转移效率,从而将氧化还原酶筛选和工程的实验工作时间减少几个数量级。在一个跨部门和多学科的欧洲 RTD 项目的框架内,已经开展了一系列显著的氧化功能化和氧化反应,这说明了上述情况。优化的反应包括 1-萘酚、25-羟基维生素 D、药物代谢物、糠酸、靛蓝和其他染料以及导电聚苯胺的酶法合成,烷烃的末端氧化,生物质脱木质素和木质素氧化等。这些成功案例证明了氧化还原酶在中大规模生物转化中尚未开发的潜力。