Suppr超能文献

脂联素通过 AMPK 通路在体内和体外逆转线粒体功能障碍,改善糖尿病条件下钛种植体的骨整合。

Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro.

机构信息

Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.

Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.

出版信息

Acta Biomater. 2017 Oct 1;61:233-248. doi: 10.1016/j.actbio.2017.06.020. Epub 2017 Jun 15.

Abstract

UNLABELLED

Diabetes-induced reactive oxygen species (ROS) overproduction would result in compromised osteointegration of titanium implant (TI) and high rate of implant failure, yet the underlying mechanisms remain elusive. Adiponectin (APN) is a fat-derived adipocytokine with strong antioxidant, mitochondrial-protective and anti-diabetic efficacies. We hypothesized that mitochondrial dysfunction under diabetes may account for the oxidative stress in osteoblasts and titanium-bone interface (TBI) instability, which could be ameliorated by APN. To test this hypothesis, we incubated primary rat osteoblasts on TI and tested the cellular behaviors when subjected to normal milieu (NM), diabetic milieu (DM), DM+APN, DM+AICAR (AMPK activator) and DM+APN+Compound C (AMPK inhibitor). In vivo, APN or APN+Compound C were administered to diabetic db/db mice with TI implanted in their femurs. Results showed that diabetes induced structural damage, dysfunction and content decrease of mitochondria in osteoblasts, which led to ROS overproduction, dysfunction and apoptosis of osteoblasts accompanied by the inhibition of AMPK signaling. APN alleviated the mitochondrial damage by activating AMPK, thus reversing osteoblast impairment and improving the osteointegration of TI evidenced by Micro-CT and histological analysis. Furthermore, AICAR showed beneficial effects similar to APN treatment, while the protective effects of APN were abolished when AMPK activation was blocked by Compound C. This study clarifies mitochondrial dysfunction as a crucial mechanism in the impaired bone healing and implant loosening in diabetes, and provides APN as a novel promising active component for biomaterial-engineering to improve clinical performance of TI in diabetic patients.

STATEMENT OF SIGNIFICANCE

The loosening rate of titanium implants in diabetic patients is high. The underlying mechanisms remain elusive and, with the rapid increase of diabetic morbility, efficacious strategies to mitigate this problem have become increasingly important. Our study showed that the mitochondrial impairment and the consequent oxidative stress in osteoblasts at the titanium-bone interface (TBI) play a critical role in the diabetes-induced poor bone repair and implant destabilization, which could become therapeutic targets. Furthermore, adiponectin, a cytokine, promotes the bio-functional recovery of osteoblasts and bone regeneration at the TBI in diabetes. This provides APN as a novel bioactive component used in material-engineering to promote the osteointegration of implants, which could reduce implant failure, especially for diabetic patients.

摘要

未加标签

糖尿病引起的活性氧(ROS)过度产生会导致钛植入物(TI)的骨整合受损和植入物失败率高,但其潜在机制仍不清楚。脂联素(APN)是一种源自脂肪的脂肪细胞因子,具有很强的抗氧化、线粒体保护和抗糖尿病作用。我们假设糖尿病下的线粒体功能障碍可能导致成骨细胞和钛骨界面(TBI)不稳定的氧化应激,而 APN 可以改善这种情况。为了验证这一假设,我们将原代大鼠成骨细胞在 TI 上孵育,并在正常环境(NM)、糖尿病环境(DM)、DM+APN、DM+AICAR(AMPK 激活剂)和 DM+APN+Compound C(AMPK 抑制剂)下测试细胞行为。在体内,将 APN 或 APN+Compound C 给予植入其股骨的糖尿病 db/db 小鼠。结果表明,糖尿病诱导成骨细胞的结构损伤、功能障碍和线粒体含量减少,导致 ROS 过度产生,成骨细胞功能障碍和凋亡,并抑制 AMPK 信号转导。APN 通过激活 AMPK 减轻线粒体损伤,从而逆转成骨细胞损伤,并通过 Micro-CT 和组织学分析改善 TI 的骨整合。此外,AICAR 表现出与 APN 治疗相似的有益作用,而当 AMPK 激活被 Compound C 阻断时,APN 的保护作用被消除。这项研究阐明了线粒体功能障碍作为糖尿病受损骨愈合和植入物松动的关键机制,并提供了 APN 作为一种新型有前途的生物材料工程活性成分,以改善糖尿病患者 TI 的临床性能。

意义声明

糖尿病患者钛植入物的松动率很高。其潜在机制仍不清楚,随着糖尿病发病率的快速增加,减轻这一问题的有效策略变得越来越重要。我们的研究表明,钛骨界面(TBI)处成骨细胞的线粒体损伤和随之而来的氧化应激在糖尿病引起的骨修复不良和植入物不稳定中起着关键作用,这可能成为治疗靶点。此外,细胞因子脂联素促进糖尿病时 TBI 处成骨细胞的生物功能恢复和骨再生。这为 APN 提供了一种新型的生物活性成分,用于材料工程,以促进植入物的骨整合,从而减少植入物失败,特别是对糖尿病患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验