Dobra Adrian, Lenkoski Alex, Rodriguez Abel
Assistant Professor, Departments of Statistics, Biobehavioral Nursing, and Health Systems and the Center for Statistics and the Social Sciences, Box 354322, University of Washington, Seattle, WA 98195.
Postdoctoral Research Fellow, Institut für Angewandte Mathematik, Universität Heidelberg, 69115 Heidelberg, Germany.
J Am Stat Assoc. 2011;106(496):1418-1433. doi: 10.1198/jasa.2011.tm10465. Epub 2012 Dec 24.
We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse estimation in multivariate lattice data, with a special emphasis on the analysis of spatial data. These models embed a great deal of flexibility in estimating both the correlation structure across outcomes and the spatial correlation structure, thereby allowing for adaptive smoothing and spatial autocorrelation parameters. Our methods are illustrated using a simulated example and a real-world application which concerns cancer mortality surveillance. Supplementary materials with computer code and the datasets needed to replicate our numerical results together with additional tables of results are available online.
我们介绍了用于多变量和矩阵变量高斯图形模型中推理和模型确定的高效马尔可夫链蒙特卡罗方法。我们的框架基于与可分解或不可分解图形相关的精度矩阵的G-Wishart先验。我们将采样算法扩展到一类用于多变量格点数据稀疏估计的新型条件自回归模型,特别强调空间数据的分析。这些模型在估计结果之间的相关结构和空间相关结构方面具有很大的灵活性,从而允许进行自适应平滑和空间自相关参数估计。我们通过一个模拟示例和一个涉及癌症死亡率监测的实际应用来说明我们的方法。带有计算机代码和复制我们数值结果所需数据集的补充材料以及额外的结果表可在线获取。