Suppr超能文献

具有多元格点数据应用的一般高斯图形模型的贝叶斯推断。

Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data.

作者信息

Dobra Adrian, Lenkoski Alex, Rodriguez Abel

机构信息

Assistant Professor, Departments of Statistics, Biobehavioral Nursing, and Health Systems and the Center for Statistics and the Social Sciences, Box 354322, University of Washington, Seattle, WA 98195.

Postdoctoral Research Fellow, Institut für Angewandte Mathematik, Universität Heidelberg, 69115 Heidelberg, Germany.

出版信息

J Am Stat Assoc. 2011;106(496):1418-1433. doi: 10.1198/jasa.2011.tm10465. Epub 2012 Dec 24.

Abstract

We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse estimation in multivariate lattice data, with a special emphasis on the analysis of spatial data. These models embed a great deal of flexibility in estimating both the correlation structure across outcomes and the spatial correlation structure, thereby allowing for adaptive smoothing and spatial autocorrelation parameters. Our methods are illustrated using a simulated example and a real-world application which concerns cancer mortality surveillance. Supplementary materials with computer code and the datasets needed to replicate our numerical results together with additional tables of results are available online.

摘要

我们介绍了用于多变量和矩阵变量高斯图形模型中推理和模型确定的高效马尔可夫链蒙特卡罗方法。我们的框架基于与可分解或不可分解图形相关的精度矩阵的G-Wishart先验。我们将采样算法扩展到一类用于多变量格点数据稀疏估计的新型条件自回归模型,特别强调空间数据的分析。这些模型在估计结果之间的相关结构和空间相关结构方面具有很大的灵活性,从而允许进行自适应平滑和空间自相关参数估计。我们通过一个模拟示例和一个涉及癌症死亡率监测的实际应用来说明我们的方法。带有计算机代码和复制我们数值结果所需数据集的补充材料以及额外的结果表可在线获取。

相似文献

2
Restricted Covariance Priors with Applications in Spatial Statistics.空间统计中受限协方差先验及其应用
Bayesian Anal. 2015 Dec 1;10(4):965-990. doi: 10.1214/14-BA927. Epub 2015 Feb 4.
6
Bayesian graph selection consistency under model misspecification.模型误设下的贝叶斯图选择一致性
Bernoulli (Andover). 2021 Feb;27(1):637-672. doi: 10.3150/20-BEJ1253. Epub 2020 Nov 20.
7
Bayesian analysis of matrix normal graphical models.矩阵正态图形模型的贝叶斯分析。
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.
10
Inferring gene networks from discrete expression data.从离散表达数据中推断基因网络。
Biostatistics. 2013 Sep;14(4):708-22. doi: 10.1093/biostatistics/kxt021. Epub 2013 Jul 18.

引用本文的文献

2
Graph-constrained Analysis for Multivariate Functional Data.多元函数数据的图约束分析
J Multivar Anal. 2025 May;207. doi: 10.1016/j.jmva.2025.105428. Epub 2025 Feb 24.
3
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.用于异构数据的协变量辅助贝叶斯图学习
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.
7
Bayesian graphical models for modern biological applications.适用于现代生物学应用的贝叶斯图形模型。
Stat Methods Appt. 2022;31(2):197-225. doi: 10.1007/s10260-021-00572-8. Epub 2021 May 27.

本文引用的文献

1
Bayesian analysis of matrix normal graphical models.矩阵正态图形模型的贝叶斯分析。
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.
2
Predictive model assessment for count data.计数数据的预测模型评估
Biometrics. 2009 Dec;65(4):1254-61. doi: 10.1111/j.1541-0420.2009.01191.x.
3
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
6
Spatio-temporal interaction with disease mapping.疾病地图绘制中的时空交互作用。
Stat Med. 2000 Aug 15;19(15):2015-35. doi: 10.1002/1097-0258(20000815)19:15<2015::aid-sim422>3.0.co;2-e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验