Suppr超能文献

深入了解MEK III型抑制剂的结合模式。迈向发现和设计针对整个人类激酶组的变构激酶抑制剂的一步。

Insights into the binding mode of MEK type-III inhibitors. A step towards discovering and designing allosteric kinase inhibitors across the human kinome.

作者信息

Zhao Zheng, Xie Lei, Bourne Philip E

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, Maryland, United States of America.

Department of Computer Science, Hunter College, The City University of New York, New York, United States of America.

出版信息

PLoS One. 2017 Jun 19;12(6):e0179936. doi: 10.1371/journal.pone.0179936. eCollection 2017.

Abstract

Protein kinases are critical drug targets for treating a large variety of human diseases. Type-III kinase inhibitors have attracted increasing attention as highly selective therapeutics. Thus, understanding the binding mechanism of existing type-III kinase inhibitors provides useful insights into designing new type-III kinase inhibitors. In this work, we have systematically studied the binding mode of MEK-targeted type-III inhibitors using structural systems pharmacology and molecular dynamics simulation. Our studies provide detailed sequence, structure, interaction-fingerprint, pharmacophore and binding-site information on the binding characteristics of MEK type-III kinase inhibitors. We hypothesize that the helix-folding activation loop is a hallmark allosteric binding site for type-III inhibitors. Subsequently, we screened and predicted allosteric binding sites across the human kinome, suggesting other kinases as potential targets suitable for type-III inhibitors.

摘要

蛋白激酶是治疗多种人类疾病的关键药物靶点。III型激酶抑制剂作为高度选择性的治疗药物已引起越来越多的关注。因此,了解现有III型激酶抑制剂的结合机制有助于设计新型III型激酶抑制剂。在这项工作中,我们使用结构系统药理学和分子动力学模拟系统地研究了MEK靶向III型抑制剂的结合模式。我们的研究提供了关于MEK III型激酶抑制剂结合特征的详细序列、结构、相互作用指纹、药效团和结合位点信息。我们假设螺旋折叠激活环是III型抑制剂的标志性变构结合位点。随后,我们筛选并预测了整个人类激酶组中的变构结合位点,表明其他激酶是适合III型抑制剂的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e07/5476283/83211320fb78/pone.0179936.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验