Suppr超能文献

计算方法在变构药物发现中的最新应用。

Recent applications of computational methods to allosteric drug discovery.

作者信息

Govindaraj Rajiv Gandhi, Thangapandian Sundar, Schauperl Michael, Denny Rajiah Aldrin, Diller David J

机构信息

Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States.

Medizen Inc., Canton, MA, United States.

出版信息

Front Mol Biosci. 2023 Jan 12;9:1070328. doi: 10.3389/fmolb.2022.1070328. eCollection 2022.

Abstract

Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.

摘要

在过去二十年中,利用变构位点开发新疗法的兴趣大幅增长。药物发现中对变构作用感兴趣的主要驱动力源于这样一个事实,即与正构位点相比,变构位点在蛋白质家族中保守性较低,从而为选择性以及最终的耐受性提供了更大的机会。虽然基于结构的正构位点和变构位点药物设计之间存在显著重叠,但变构位点带来了额外的挑战,主要涉及需要更好地理解蛋白质的灵活性及其与蛋白质功能的关系。在这里,我们通过强调各种靶标类别的几个靶点,研究基于结构的药物设计对变构药物设计的影响程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec4/9877542/0e2f8af06522/fmolb-09-1070328-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验