Suppr超能文献

用于骨再生的聚己内酯和聚己内酯/陶瓷基 3D 生物打印多孔支架:一项比较研究。

Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.

机构信息

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.

Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.

出版信息

Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335. doi: 10.1016/j.msec.2017.05.003. Epub 2017 May 4.

Abstract

UNLABELLED

One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such as porosity, mechanical strength, pore size and pore interconnectivity, and biocompatibility. In this study, we employed 3D bioplotting, a RP technology, to fabricate scaffolds made from (i) pure polycaprolactone (PCL) and (ii) a composite based on PCL and ceramic micro-powder. The ceramics used for the composite were bovine bone filling Nukbone® (NKB), and hydroxyapatite (HA) with 5%, 10% or 20% wt.

CONTENT

The scaffolds were fabricated in a cellular lattice structure (i.e. meshing mode) using a 0/90° lay down pattern with a continuous contour filament in order to achieve interconnected porous reticular structures. We varied the temperature, as well as injection speed and pressure during the bioplotting process to achieve scaffolds with pore size ranging between 200 and 400μm and adequate mechanical stability. The resulting scaffolds had an average pore size of 323μm and an average porosity of 32%. Characterization through ATR-FTIR revealed the presence of the characteristic bands of hydroxyapatite in the PCL matrix, and presented an increase of the intensity of the phosphate and carbonyl bands as the ceramic content increased. The bioplotted 3D scaffolds have a Young's modulus (E) in the range between 0.121 and 0.171GPa, which is compatible with the modulus of natural bone. PCL/NKB scaffolds, particularly 10NKBP (10% NKB wt.) exhibited the highest proliferation optical density, demonstrating an evident osteoconductive effect when cultured in Dulbecco's Modified Eagle Medium (DMEM). Scanning electron microscopy (SEM) confirmed osteoblast anchorage to all composite scaffolds, but a low adhesion to the all-PCL scaffold, as well as cell proliferation. The results from this study demonstrate the potential of PCL/NKB 3D bioplotted scaffolds as viable platforms to enable osseous tissue formation, which can be used in several tissue engineering applications, including improvement of bone tissue regeneration.

摘要

未加标签

支架在器官和组织再生领域面临的一个关键挑战是模仿天然组织的结构以及化学和生物学特性。对与细胞接触的材料的结构、机械性能和成分进行高级控制对于克服这一挑战至关重要。因此,在制造阶段定义支架的制造方法、材料和参数非常重要。随着快速成型(RP)的出现,现在可以使用具有组织增殖和再生所必需的特征的三维(3D)支架,例如多孔性、机械强度、孔径和孔连通性以及生物相容性。在这项研究中,我们使用 3D 生物打印,一种 RP 技术,制造了由(i)纯聚己内酯(PCL)和(ii)基于 PCL 和陶瓷微粉的复合材料制成的支架。用于复合材料的陶瓷是牛骨填充 Nukbone®(NKB)和羟基磷灰石(HA),其重量百分比为 5%、10%或 20%。

内容

支架是在细胞晶格结构(即网格模式)中制造的,使用 0/90°铺层图案和连续轮廓丝来实现相互连接的多孔网状结构。我们在生物打印过程中改变温度、注射速度和压力,以实现孔径在 200 至 400μm 之间且具有足够机械稳定性的支架。所得支架的平均孔径为 323μm,平均孔隙率为 32%。ATR-FTIR 表征显示 PCL 基质中存在羟基磷灰石的特征带,并且随着陶瓷含量的增加,磷酸盐和羰基带的强度增加。生物打印的 3D 支架的杨氏模量(E)在 0.121 至 0.171GPa 之间,与天然骨的模量相匹配。PCL/NKB 支架,特别是 10NKBP(10% NKB wt.)显示出最高的增殖光密度,表明在杜氏改良伊格尔培养基(DMEM)中培养时具有明显的成骨作用。扫描电子显微镜(SEM)证实了所有复合支架上成骨细胞的附着,但对全 PCL 支架的附着和细胞增殖较低。这项研究的结果表明,PCL/NKB 3D 生物打印支架作为促进骨组织形成的可行平台具有潜力,可用于多种组织工程应用,包括改善骨组织再生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验