Suppr超能文献

基于树型无线传感器网络的增强溯源方案安全性的不等概率标记方法。

Unequal Probability Marking Approach to Enhance Security of Traceback Scheme in Tree-Based WSNs.

作者信息

Huang Changqin, Ma Ming, Liu Xiao, Liu Anfeng, Zuo Zhengbang

机构信息

School of Information Technology in Education, South China Normal University, Guangzhou 510631, China.

School of Information Science and Engineering, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2017 Jun 17;17(6):1418. doi: 10.3390/s17061418.

Abstract

Fog (from core to edge) computing is a newly emerging computing platform, which utilizes a large number of network devices at the edge of a network to provide ubiquitous computing, thus having great development potential. However, the issue of security poses an important challenge for fog computing. In particular, the Internet of Things (IoT) that constitutes the fog computing platform is crucial for preserving the security of a huge number of wireless sensors, which are vulnerable to attack. In this paper, a new unequal probability marking approach is proposed to enhance the security performance of logging and migration traceback (LM) schemes in tree-based wireless sensor networks (WSNs). The main contribution of this paper is to overcome the deficiency of the LM scheme that has a higher network lifetime and large storage space. In the unequal probability marking logging and migration (UPLM) scheme of this paper, different marking probabilities are adopted for different nodes according to their distances to the sink. A large marking probability is assigned to nodes in remote areas (areas at a long distance from the sink), while a small marking probability is applied to nodes in nearby area (areas at a short distance from the sink). This reduces the consumption of storage and energy in addition to enhancing the security performance, lifetime, and storage capacity. Marking information will be migrated to nodes at a longer distance from the sink for increasing the amount of stored marking information, thus enhancing the security performance in the process of migration. The experimental simulation shows that for general tree-based WSNs, the UPLM scheme proposed in this paper can store 1.12-1.28 times the amount of stored marking information that the equal probability marking approach achieves, and has 1.15-1.26 times the storage utilization efficiency compared with other schemes.

摘要

雾(从核心到边缘)计算是一种新兴的计算平台,它利用网络边缘的大量网络设备来提供普适计算,因此具有巨大的发展潜力。然而,安全问题对雾计算构成了重大挑战。特别是,构成雾计算平台的物联网对于保护大量易受攻击的无线传感器的安全至关重要。本文提出了一种新的不等概率标记方法,以提高基于树的无线传感器网络(WSN)中日志记录和迁移回溯(LM)方案的安全性能。本文的主要贡献在于克服了LM方案网络寿命较长且存储空间较大的不足。在本文的不等概率标记日志记录和迁移(UPLM)方案中,根据不同节点到汇聚节点的距离采用不同的标记概率。为偏远地区(距离汇聚节点较远的区域)的节点分配较大的标记概率,而对附近区域(距离汇聚节点较近的区域)的节点应用较小的标记概率。这除了提高安全性能、寿命和存储容量外,还减少了存储和能量消耗。标记信息将迁移到距离汇聚节点更远的节点,以增加存储的标记信息量,从而在迁移过程中提高安全性能。实验仿真表明,对于一般的基于树的WSN,本文提出的UPLM方案存储的标记信息量是等概率标记方法的1.12 - 1.28倍,与其他方案相比,存储利用效率提高了1.15 - 1.26倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验