Suppr超能文献

用于处理来自连接到医疗物联网的糖尿病设备数据的雾计算和边缘计算架构。

Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things.

作者信息

Klonoff David C

机构信息

1 Diabetes Research Institute; Mills-Peninsula Medical Center, San Mateo, CA, USA.

出版信息

J Diabetes Sci Technol. 2017 Jul;11(4):647-652. doi: 10.1177/1932296817717007.

Abstract

The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.

摘要

物联网(IoT)正在产生海量数据。借助云计算,医疗传感器和执行器数据可由分布式服务器进行远程存储和分析。然后,结果可通过互联网传递。物联网中的设备数量包括血糖监测仪、连续血糖监测仪、胰岛素笔、胰岛素泵和闭环系统等无线糖尿病设备。用于数据存储和分析的云模型越来越难以处理数据雪崩,处理工作正被推向更靠近数据生成设备的网络边缘。雾计算和边缘计算是两种数据处理架构,它们可以将数据从云端卸载,在患者附近进行处理,并在几毫秒或几秒内实现机器对机器或机器对人的信息传输。传感器数据可以通过雾计算(使用本地节点)和边缘计算(在传感设备内部)在传感和执行设备附近进行处理。与云计算相比,雾计算和边缘计算具有五个优势:(1)更高的数据传输速度;(2)对有限带宽的依赖性更低;(3)更高的隐私性和安全性;(4)对在法律可能限制使用或允许政府进行不必要访问的外国生成的数据有更大的控制权;(5)成本更低,因为更多源自传感器的数据在本地使用,远程传输的数据更少。几乎所有联网糖尿病设备都使用雾计算或边缘计算,因为糖尿病患者需要对传感器输入做出非常快速的响应,无法容忍云计算带来的延迟。

相似文献

3
Actuator behaviour modelling in IoT-Fog-Cloud simulation.物联网-雾计算-云计算模拟中的执行器行为建模
PeerJ Comput Sci. 2021 Jul 30;7:e651. doi: 10.7717/peerj-cs.651. eCollection 2021.

引用本文的文献

3
Applications of Fog Computing in Healthcare.雾计算在医疗保健中的应用。
Cureus. 2024 Jul 10;16(7):e64263. doi: 10.7759/cureus.64263. eCollection 2024 Jul.
7
Digital Connectivity: The Sixth Vital Sign.数字化连通性:第六生命体征。
J Diabetes Sci Technol. 2022 Sep;16(5):1303-1308. doi: 10.1177/19322968211015241. Epub 2021 May 12.

本文引用的文献

4
A Review of Safety and Design Requirements of the Artificial Pancreas.人工胰腺的安全性与设计要求综述
Ann Biomed Eng. 2016 Nov;44(11):3158-3172. doi: 10.1007/s10439-016-1679-2. Epub 2016 Jun 28.
5
Modulation of critical brain dynamics using closed-loop neurofeedback stimulation.使用闭环神经反馈刺激调节关键脑动力学
Clin Neurophysiol. 2016 Aug;127(8):2882-2889. doi: 10.1016/j.clinph.2016.04.028. Epub 2016 May 17.
7
Smart sensors for maintaining physiologic homeostasis.用于维持生理稳态的智能传感器。
J Diabetes Sci Technol. 2011 May 1;5(3):470-5. doi: 10.1177/193229681100500301.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验