Suppr超能文献

用于处理来自连接到医疗物联网的糖尿病设备数据的雾计算和边缘计算架构。

Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things.

作者信息

Klonoff David C

机构信息

1 Diabetes Research Institute; Mills-Peninsula Medical Center, San Mateo, CA, USA.

出版信息

J Diabetes Sci Technol. 2017 Jul;11(4):647-652. doi: 10.1177/1932296817717007.

Abstract

The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.

摘要

物联网(IoT)正在产生海量数据。借助云计算,医疗传感器和执行器数据可由分布式服务器进行远程存储和分析。然后,结果可通过互联网传递。物联网中的设备数量包括血糖监测仪、连续血糖监测仪、胰岛素笔、胰岛素泵和闭环系统等无线糖尿病设备。用于数据存储和分析的云模型越来越难以处理数据雪崩,处理工作正被推向更靠近数据生成设备的网络边缘。雾计算和边缘计算是两种数据处理架构,它们可以将数据从云端卸载,在患者附近进行处理,并在几毫秒或几秒内实现机器对机器或机器对人的信息传输。传感器数据可以通过雾计算(使用本地节点)和边缘计算(在传感设备内部)在传感和执行设备附近进行处理。与云计算相比,雾计算和边缘计算具有五个优势:(1)更高的数据传输速度;(2)对有限带宽的依赖性更低;(3)更高的隐私性和安全性;(4)对在法律可能限制使用或允许政府进行不必要访问的外国生成的数据有更大的控制权;(5)成本更低,因为更多源自传感器的数据在本地使用,远程传输的数据更少。几乎所有联网糖尿病设备都使用雾计算或边缘计算,因为糖尿病患者需要对传感器输入做出非常快速的响应,无法容忍云计算带来的延迟。

相似文献

3
Actuator behaviour modelling in IoT-Fog-Cloud simulation.
PeerJ Comput Sci. 2021 Jul 30;7:e651. doi: 10.7717/peerj-cs.651. eCollection 2021.
4
Remote Pain Monitoring Using Fog Computing for e-Healthcare: An Efficient Architecture.
Sensors (Basel). 2020 Nov 18;20(22):6574. doi: 10.3390/s20226574.
6
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Sensors (Basel). 2017 Jul 24;17(7):1695. doi: 10.3390/s17071695.
8
An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment.
PLoS One. 2019 Nov 13;14(11):e0224934. doi: 10.1371/journal.pone.0224934. eCollection 2019.
10
Privacy-Preserving Data Aggregation against False Data Injection Attacks in Fog Computing.
Sensors (Basel). 2018 Aug 13;18(8):2659. doi: 10.3390/s18082659.

引用本文的文献

2
Telesurgery: current status and strategies for latency reduction.
J Robot Surg. 2025 Apr 12;19(1):153. doi: 10.1007/s11701-025-02333-1.
3
Applications of Fog Computing in Healthcare.
Cureus. 2024 Jul 10;16(7):e64263. doi: 10.7759/cureus.64263. eCollection 2024 Jul.
4
A Survey of Authentication in Internet of Things-Enabled Healthcare Systems.
Sensors (Basel). 2022 Nov 23;22(23):9089. doi: 10.3390/s22239089.
5
Biomedical IoT: Enabling Technologies, Architectural Elements, Challenges, and Future Directions.
IEEE Access. 2022;10:31306-31339. doi: 10.1109/ACCESS.2022.3159235. Epub 2022 Mar 14.
6
Secure Patient Authentication Framework in the Healthcare System Using Wireless Medical Sensor Networks.
J Healthc Eng. 2021 Jul 22;2021:9954089. doi: 10.1155/2021/9954089. eCollection 2021.
7
Digital Connectivity: The Sixth Vital Sign.
J Diabetes Sci Technol. 2022 Sep;16(5):1303-1308. doi: 10.1177/19322968211015241. Epub 2021 May 12.
8
Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic.
J Oral Biol Craniofac Res. 2021 Apr-Jun;11(2):209-214. doi: 10.1016/j.jobcr.2021.01.015. Epub 2021 Jan 30.
9
Trends in IoT based solutions for health care: Moving AI to the edge.
Pattern Recognit Lett. 2020 Jul;135:346-353. doi: 10.1016/j.patrec.2020.05.016. Epub 2020 May 13.
10
Advancing the State of the Fog Computing to Enable 5G Network Technologies.
Sensors (Basel). 2020 Mar 21;20(6):1754. doi: 10.3390/s20061754.

本文引用的文献

1
An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.
J Med Syst. 2016 Dec;40(12):286. doi: 10.1007/s10916-016-0644-9. Epub 2016 Oct 29.
2
Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing.
J Diabetes Sci Technol. 2017 Mar;11(2):195-197. doi: 10.1177/1932296816676189. Epub 2016 Oct 26.
3
Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant.
Arch Dis Child Fetal Neonatal Ed. 2017 Jan;102(1):F31-F36. doi: 10.1136/archdischild-2016-310650. Epub 2016 Sep 15.
4
A Review of Safety and Design Requirements of the Artificial Pancreas.
Ann Biomed Eng. 2016 Nov;44(11):3158-3172. doi: 10.1007/s10439-016-1679-2. Epub 2016 Jun 28.
5
Modulation of critical brain dynamics using closed-loop neurofeedback stimulation.
Clin Neurophysiol. 2016 Aug;127(8):2882-2889. doi: 10.1016/j.clinph.2016.04.028. Epub 2016 May 17.
7
Smart sensors for maintaining physiologic homeostasis.
J Diabetes Sci Technol. 2011 May 1;5(3):470-5. doi: 10.1177/193229681100500301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验