Suppr超能文献

通过高速原子力显微镜观察支撑脂质膜中碳纳米管孔蛋白的实时动力学。

Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy.

作者信息

Zhang Yuliang, Tunuguntla Ramya H, Choi Pyung-On, Noy Aleksandr

机构信息

Biology and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

Biology and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0226.

Abstract

In-plane mobility of proteins in lipid membranes is one of the fundamental mechanisms supporting biological functionality. Here we use high-speed atomic force microscopy (HS-AFM) to show that a novel type of biomimetic channel-carbon nanotube porins (CNTPs)-is also laterally mobile in supported lipid membranes, mimicking biological protein behaviour. HS-AFM can capture real-time dynamics of CNTP motion in the supported lipid bilayer membrane, build long-term trajectories of the CNTP motion and determine the diffusion coefficients associated with this motion. Our analysis shows that diffusion coefficients of CNTPs fall into the same range as those of proteins in supported lipid membranes. CNTPs in HS-AFM experiments often exhibit 'directed' diffusion behaviour, which is common for proteins in live cell membranes.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.

摘要

蛋白质在脂质膜中的平面内流动性是支持生物功能的基本机制之一。在这里,我们使用高速原子力显微镜(HS-AFM)来表明一种新型的仿生通道——碳纳米管孔蛋白(CNTPs)——在支撑脂质膜中也具有横向流动性,模仿了生物蛋白质的行为。HS-AFM可以捕捉支撑脂质双层膜中CNTP运动的实时动态,构建CNTP运动的长期轨迹,并确定与该运动相关的扩散系数。我们的分析表明,CNTPs的扩散系数与支撑脂质膜中蛋白质的扩散系数处于同一范围。HS-AFM实验中的CNTPs经常表现出“定向”扩散行为,这在活细胞膜中的蛋白质中很常见。本文是主题为“膜孔:从结构与组装到医学与技术”的特刊的一部分。

相似文献

1
Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy.
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0226.
2
Carbon nanotube porin diffusion in mixed composition supported lipid bilayers.
Sci Rep. 2020 Jul 17;10(1):11908. doi: 10.1038/s41598-020-68059-2.
3
Co-Assembly of Carbon Nanotube Porins into Biomimetic Peptoid Membranes.
Small. 2023 May;19(21):e2206810. doi: 10.1002/smll.202206810. Epub 2023 Feb 21.
4
Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
J Chem Phys. 2021 May 28;154(20):204704. doi: 10.1063/5.0049550.
5
Probing the Ion Transport Properties of Ultrashort Carbon Nanotubes Integrated with Supported Lipid Bilayers via Electrochemical Analysis.
J Phys Chem B. 2023 Jul 20;127(28):6316-6324. doi: 10.1021/acs.jpcb.3c02917. Epub 2023 Jul 11.
6
High-speed atomic force microscopy to study pore-forming proteins.
Methods Enzymol. 2021;649:189-217. doi: 10.1016/bs.mie.2021.01.033. Epub 2021 Feb 18.
7
Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study.
Nano Lett. 2016 Jul 13;16(7):4019-24. doi: 10.1021/acs.nanolett.6b00466. Epub 2016 Jun 20.
8
Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins.
Nat Protoc. 2016 Oct;11(10):2029-2047. doi: 10.1038/nprot.2016.119. Epub 2016 Sep 22.
9
Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
PLoS One. 2019 Feb 22;14(2):e0212197. doi: 10.1371/journal.pone.0212197. eCollection 2019.

引用本文的文献

1
Nanoscale dynamics of Dynamin 1 helices reveals squeeze-twist deformation mode critical for membrane fission.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2321514121. doi: 10.1073/pnas.2321514121. Epub 2024 Nov 27.
2
CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice.
Vaccines (Basel). 2024 Oct 3;12(10):1134. doi: 10.3390/vaccines12101134.
3
Evaluation in mice of cell-free produced CT584 as a Chlamydia vaccine antigen.
bioRxiv. 2024 Jun 6:2024.06.04.597210. doi: 10.1101/2024.06.04.597210.
4
Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly.
ACS Appl Bio Mater. 2024 Feb 19;7(2):528-534. doi: 10.1021/acsabm.2c00585. Epub 2022 Sep 7.
5
Carbon nanotube porin diffusion in mixed composition supported lipid bilayers.
Sci Rep. 2020 Jul 17;10(1):11908. doi: 10.1038/s41598-020-68059-2.
6
Interactions of nanomaterials with ion channels and related mechanisms.
Br J Pharmacol. 2019 Oct;176(19):3754-3774. doi: 10.1111/bph.14792. Epub 2019 Sep 4.
7
Scanning Techniques for Nanobioconjugates of Carbon Nanotubes.
Scanning. 2018 Jun 13;2018:6254692. doi: 10.1155/2018/6254692. eCollection 2018.
8
Membrane pores: from structure and assembly, to medicine and technology.
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0208.

本文引用的文献

1
Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study.
Nano Lett. 2016 Jul 13;16(7):4019-24. doi: 10.1021/acs.nanolett.6b00466. Epub 2016 Jun 20.
2
Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins.
Nat Nanotechnol. 2016 Jul;11(7):639-44. doi: 10.1038/nnano.2016.43. Epub 2016 Apr 4.
3
Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
ACS Nano. 2016 Mar 22;10(3):3693-701. doi: 10.1021/acsnano.6b00202. Epub 2016 Mar 9.
4
Osmotically-driven transport in carbon nanotube porins.
Nano Lett. 2014 Dec 10;14(12):7051-6. doi: 10.1021/nl5034446. Epub 2014 Nov 5.
5
Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
Nature. 2014 Oct 30;514(7524):612-5. doi: 10.1038/nature13817.
6
Membrane perturbation by carbon nanotube insertion: pathways to internalization.
Small. 2013 Nov 11;9(21):3639-46. doi: 10.1002/smll.201202640. Epub 2013 Feb 18.
8
Characterization of the motion of membrane proteins using high-speed atomic force microscopy.
Nat Nanotechnol. 2012 Aug;7(8):525-9. doi: 10.1038/nnano.2012.109. Epub 2012 Jul 8.
10
Single-molecule imaging on living bacterial cell surface by high-speed AFM.
J Mol Biol. 2012 Sep 14;422(2):300-9. doi: 10.1016/j.jmb.2012.05.018. Epub 2012 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验