U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France.
Nat Nanotechnol. 2012 Aug;7(8):525-9. doi: 10.1038/nnano.2012.109. Epub 2012 Jul 8.
For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.
为了让细胞正常运作,膜蛋白必须能够在生物膜内扩散。这些膜蛋白的功能取决于它们的位置,也取决于蛋白质-蛋白质和蛋白质-脂质的相互作用。然而,到目前为止,还不可能同时研究生物膜的结构和动力学。在这里,我们展示了使用高速原子力显微镜可以对未标记的膜蛋白的运动进行特征描述。我们发现,由于扩散限制聚集,外膜蛋白 F(OmpF)的分子在膜中广泛分布,并且虽然整体蛋白质运动大致与膜中蛋白质的局部密度成正比,但单个蛋白质分子也可以自由扩散或被蛋白质-蛋白质相互作用困住。使用这些测量结果和分子动力学模拟的结果,我们确定了一个膜蛋白的相互作用势图和相互作用途径,这应该为理解单个蛋白质的结构与超分子膜的结构和动力学之间的联系提供新的见解。