From the Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China (J.W., H.Z., Z.F., G.L., Q.M., Z.T., R.W., Y.L.); Beijing Institute for Brain Disorders, China (Y.L.); and Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shen Yang (J.W., J.F.).
Stroke. 2017 Aug;48(8):2211-2221. doi: 10.1161/STROKEAHA.117.017387. Epub 2017 Jun 19.
Long noncoding RNA H19 is repressed after birth, but can be induced by hypoxia. We aim to investigate the impact on and underlying mechanism of H19 induction after ischemic stroke.
Circulating H19 levels in stroke patients and mice subjected to middle cerebral artery occlusion were assessed using real-time polymerase chain reaction. H19 siRNA and histone deacetylase 1 (HDAC1) plasmid were used to knock down H19 and overexpress HDAC1, respectively. Microglial polarization and ischemic outcomes were assessed in middle cerebral artery occlusion mice and BV2 microglial cells subjected to oxygen-glucose deprivation.
Circulating H19 levels were significantly higher in stroke patients compared with healthy controls, indicating high diagnostic sensitivity and specificity. Moreover, plasma H19 levels showed a positive correlation with National Institute of Health Stroke Scale score and tumor necrosis factor-α levels. After middle cerebral artery occlusion in mice, H19 levels increased in plasma, white blood cells, and brain. Intracerebroventricular injection of H19 siRNA reduced infarct volume and brain edema, decreased tumor necrosis factor-α and interleukin-1β levels in brain tissue and plasma, and increased plasma interleukin-10 concentrations 24 hours poststroke. Additionally, H19 knockdown attenuated brain tissue loss and neurological deficits 14 days poststroke. BV2 cell-based experiments showed that H19 knockdown blocked oxygen-glucose deprivation-driven M1 microglial polarization, decreased production of tumor necrosis factor-α and CD11b, and increased the expression of Arg-1 and CD206. Furthermore, H19 knockdown reversed oxygen-glucose deprivation-induced upregulation of HDAC1 and downregulation of acetyl-histone H3 and acetyl-histone H4. In contrast, HDAC1 overexpression negated the effects of H19 knockdown.
Our findings indicate that H19 promotes neuroinflammation by driving HDAC1-dependent M1 microglial polarization, suggesting a novel H19-based diagnosis and therapy for ischemic stroke.
长链非编码 RNA H19 在出生后受到抑制,但可被缺氧诱导。本研究旨在探讨缺血性卒中后 H19 诱导的影响及其潜在机制。
采用实时聚合酶链反应检测卒中患者和大脑中动脉闭塞(MCAO)小鼠的循环 H19 水平。使用 H19 siRNA 和组蛋白去乙酰化酶 1(HDAC1)质粒分别敲低 H19 和过表达 HDAC1。在 MCAO 小鼠和氧葡萄糖剥夺(OGD)BV2 小胶质细胞中评估小胶质细胞极化和缺血性结局。
与健康对照者相比,卒中患者的循环 H19 水平显著升高,提示其具有较高的诊断灵敏度和特异性。此外,血浆 H19 水平与国立卫生研究院卒中量表评分和肿瘤坏死因子-α水平呈正相关。在 MCAO 后,小鼠的血浆、白细胞和脑组织中 H19 水平升高。脑室内注射 H19 siRNA 可降低梗死体积和脑水肿,降低脑组织和血浆中肿瘤坏死因子-α和白细胞介素-1β水平,并增加卒中后 24 小时的血浆白细胞介素-10 浓度。此外,H19 敲低可减轻卒中后 14 天的脑组织损失和神经功能缺损。BV2 细胞实验表明,H19 敲低可阻断氧葡萄糖剥夺诱导的 M1 小胶质细胞极化,减少肿瘤坏死因子-α和 CD11b 的产生,增加 Arg-1 和 CD206 的表达。此外,H19 敲低可逆转氧葡萄糖剥夺诱导的 HDAC1 上调和乙酰化组蛋白 H3 和乙酰化组蛋白 H4 的下调。相反,HDAC1 过表达可否定 H19 敲低的作用。
本研究结果表明,H19 通过驱动 HDAC1 依赖性 M1 小胶质细胞极化促进神经炎症,提示 H19 可能成为缺血性卒中的一种新的诊断和治疗靶点。