Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5424-E5433. doi: 10.1073/pnas.1700990114. Epub 2017 Jun 19.
Lanthipeptides are ribosomally derived peptide secondary metabolites that undergo extensive posttranslational modification. Prochlorosins are a group of lanthipeptides produced by certain strains of the ubiquitous marine picocyanobacteria and Unlike other lanthipeptide-producing bacteria, picocyanobacteria use an unprecedented mechanism of substrate promiscuity for the production of numerous and diverse lanthipeptides using a single lanthionine synthetase. Through a cross-scale analysis of prochlorosin biosynthesis genes-from genomes to oceanic populations-we show that marine picocyanobacteria have the collective capacity to encode thousands of different cyclic peptides, few of which would display similar ring topologies. To understand how this extensive structural diversity arises, we used deep sequencing of wild populations to reveal genetic variation patterns in prochlorosin genes. We present evidence that structural variability among prochlorosins is the result of a diversifying selection process that favors large, rather than small, sequence changes in the precursor peptide genes. This mode of molecular evolution disregards any conservation of the ancestral structure and enables the emergence of extensively different cyclic peptides through short mutational paths based on indels. Contrary to its fast-evolving peptide substrates, the prochlorosin lanthionine synthetase evolves under a strong purifying selection, indicating that the diversification of prochlorosins is not constrained by commensurate changes in the biosynthetic enzyme. This evolutionary interplay between the prochlorosin peptide substrates and the lanthionine synthetase suggests that structure diversification, rather than structure refinement, is the driving force behind the creation of new prochlorosin structures and represents an intriguing mechanism by which natural product diversity arises.
类硫堇肽是一类核糖体衍生的肽类次生代谢产物,经历广泛的翻译后修饰。原绿菌素是一类由广泛存在的海洋蓝藻中的某些菌株产生的类硫堇肽,与其他产生类硫堇肽的细菌不同,海洋蓝藻使用一种前所未有的底物混杂机制,利用单个硫醇酶来生产众多不同的类硫堇肽。通过对原绿菌素生物合成基因的跨尺度分析——从基因组到海洋种群,我们表明海洋蓝藻具有编码数千种不同环状肽的集体能力,其中很少有肽会显示出相似的环拓扑结构。为了了解这种广泛的结构多样性是如何产生的,我们使用野生种群的深度测序来揭示原绿菌素基因中的遗传变异模式。我们提供的证据表明,原绿菌素之间的结构可变性是一种多样化选择过程的结果,该过程有利于前体肽基因中较大而非较小的序列变化。这种分子进化模式忽略了祖先结构的任何保守性,并通过基于插入缺失的短突变路径,使广泛不同的环状肽得以出现。与快速进化的肽底物相反,原绿菌素硫醇酶在强烈的纯化选择下进化,这表明原绿菌素的多样化不受生物合成酶相应变化的限制。原绿菌素肽底物和硫醇酶之间的这种进化相互作用表明,结构多样化而不是结构细化是产生新原绿菌素结构的驱动力,代表了一种有趣的机制,通过该机制产生了天然产物的多样性。