Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
mBio. 2024 Nov 13;15(11):e0349723. doi: 10.1128/mbio.03497-23. Epub 2024 Oct 18.
is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high-light (HL)- or low-light (LL)-adapted groups representing broad phylogenetic grades-each composed of several monophyletic clades. Here, we physiologically characterize four new strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean. We combine these physiological properties with genomic analyses to explore the evolution of photosynthetic antennae and discuss potential macroevolutionary implications. The isolates belong to deeply branching low-light-adapted clades that have no other cultivated representatives and display some unusual characteristics. For example, despite its otherwise low-light-adapted physiological characteristics, strain MIT1223 has low chl content similar to high-light-adapted strains. Isolate genomes revealed that each strain contains a unique arsenal of pigment biosynthesis and binding alleles that have been horizontally acquired, contributing to the observed physiological diversity. Comparative genomic analysis of all picocyanobacteria reveals that Pcb, the major pigment carrying protein in , greatly increased in copy number and diversity per genome along a branch that coincides with the loss of facultative particle attachment. Collectively, these observations support a recently developed macroevolutionary model, in which niche-constructing radiations allowed ancestral lineages of picocyanobacteria to transition from a particle-attached to planktonic lifestyle and broadly colonize the euphotic zone.The marine cyanobacterium, , is among the Earth's most abundant organisms, and much of its genetic and physiological diversity remains uncharacterized. Although field studies help reveal the scope of diversity, cultured isolates allow us to link genomic potential to physiological processes, illuminate eco-evolutionary feedbacks, and test theories arising from comparative genomics of wild cells. Here, we report the isolation and characterization of novel low-light (LL)-adapted strains that fill in multiple evolutionary gaps. These new strains are the first cultivated representatives of the LLVII and LLVIII paraphyletic grades of , which are broadly distributed in the lower regions of the ocean euphotic zone. Each of these grades is a unique, highly diverse section of the tree that separates distinct ecological groups: the LLVII grade branches between monophyletic clades that have facultatively particle-associated and constitutively planktonic lifestyles, whereas the LLVIII grade lies along the branch that leads to all high-light (HL)-adapted clades. Characterizing strains and genomes from these grades yields insights into the large-scale evolution of . The new LLVII and LLVIII strains are adapted to growth at very low irradiance levels and possess unique light-harvesting gene signatures and pigmentation. The LLVII strains represent the most basal group with a major expansion in photosynthetic antenna genes. Furthermore, a strain from the LLVIII grade challenges the paradigm that all LL-adapted exhibit high ratios of chl . These findings provide insights into the photophysiological evolution of and redefine what it means to be a low- vs high-light-adapted cell.
是一个多样化的蓝细菌属,是地球上最丰富的光养生物。其光合作用的多样性将其分为高光(HL)或低光(LL)适应组,代表广泛的系统发育等级——每个等级都由几个单系进化枝组成。在这里,我们从北太平洋深层叶绿素最大值以下的地方分离出四种新的 菌株,并对其进行了生理特性的描述。我们将这些生理特性与基因组分析相结合,探索了光合作用天线的进化,并讨论了潜在的宏观进化意义。这些分离株属于深分支的低光适应进化枝,没有其他培养的代表,表现出一些不寻常的特征。例如,尽管其生理特征适应低光,但菌株 MIT1223 的 chl 含量与高光适应菌株相似,较低。分离株基因组显示,每个菌株都含有独特的色素生物合成和结合等位基因库,这些基因是通过水平获得的,有助于观察到的生理多样性。对所有蓝细菌的比较基因组分析表明, 中主要的色素携带蛋白 Pcb 的拷贝数和多样性大大增加,每个基因组的数量都有所增加,与兼性颗粒附着的丧失相一致。总的来说,这些观察结果支持了一个最近发展的宏观进化模型,即生态位构建辐射允许蓝细菌的祖先谱系从颗粒附着的生活方式向浮游生活方式过渡,并广泛地殖民于真光层。海洋蓝细菌 是地球上最丰富的生物之一,其大部分遗传和生理多样性仍未被描述。虽然实地研究有助于揭示多样性的范围,但培养的分离株使我们能够将基因组潜力与生理过程联系起来,阐明生态进化反馈,并检验来自野生细胞比较基因组学的理论。在这里,我们报告了新型低光(LL)适应 菌株的分离和特性,这些菌株填补了多个进化空白。这些新菌株是 LLVII 和 LLVIII 并系等级的第一个培养代表,它们广泛分布在海洋真光层的下部区域。这些等级中的每一个都是 树的一个独特的、高度多样化的分支,将不同的生态群分开:LLVII 等级在具有兼性颗粒附着和固着浮游生活方式的单系进化枝之间分支,而 LLVIII 等级位于导致所有高光(HL)适应进化枝的分支上。对这些等级的菌株和基因组进行特征描述,为 的大规模进化提供了深入的了解。新的 LLVII 和 LLVIII 菌株适应于非常低的辐照度水平生长,并且具有独特的光捕获基因特征和色素沉着。LLVII 菌株代表了具有主要扩展的光合作用天线基因的最原始的 群体。此外,来自 LLVIII 等级的一个菌株挑战了所有 LL 适应的 都表现出高比例的 chl 的范式。这些发现为 的光生理进化提供了深入的了解,并重新定义了低光适应和高光适应 细胞的含义。