Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, Maryland, 20852, USA.
Sci Rep. 2017 Jun 19;7(1):3811. doi: 10.1038/s41598-017-03798-3.
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qβ VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
疫苗研发工作最近集中于通过多聚化支架或类病毒颗粒(VLPs)展示来增强对免疫原性差的抗原的免疫应答。通常,这些研究表明与单体相比,纳米阵列抗原可提高抗体滴度。有许多这样的研究和支架技术,但对于诱导的抗体数量和功效,很少有平台进行并列评估。在这里,我们展示了三种有前景的疟疾传播阻断疫苗(TBV)靶标 Pfs25 展示的三种领先平台的直接比较。这些平台包括抗原-支架连接的三种重要途径:基因融合、化学交联和插入和展示 SpyTag/SpyCatcher 缀合。我们证明化学偶联的 Qβ VLPs 引发了最高数量的抗体,而 SpyCatcher-AP205-VLPs 在蚊子喂食时引发了最高质量的抗 Pfs25 抗体以阻断传播。这些定量和定性特征将指导未来的纳米组装优化,以及针对传播的新一代疟疾疫苗的开发。