Dabkowska Aleksandra P, Valldeperas Maria, Hirst Christopher, Montis Costanza, Pálsson Gunnar K, Wang Meina, Nöjd Sofi, Gentile Luigi, Barauskas Justas, Steinke Nina-Juliane, Schroeder-Turk Gerd E, George Sebastian, Skoda Maximilian W A, Nylander Tommy
Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden.
NanoLund, Lund University, PO Box 118, 22100 Lund, Sweden.
Interface Focus. 2017 Aug 6;7(4):20160150. doi: 10.1098/rsfs.2016.0150. Epub 2017 Jun 16.
Biological membranes do not only occur as planar bilayer structures, but depending on the lipid composition, can also curve into intriguing three-dimensional structures. In order to fully understand the biological implications as well as to reveal the full potential for applications, e.g. for drug delivery and other biomedical devices, of such structures, well-defined model systems are required. Here, we discuss the formation of lipid non-lamellar liquid crystalline (LC) surface layers spin-coated from the constituting lipids followed by hydration of the lipid layer. We demonstrate that hybrid lipid polymer films can be formed with different properties compared with the neat lipid LC layers. The nanostructure and morphologies of the lipid films formed reflect those in the bulk. Most notably, mixed lipid layers, which are composed of glycerol monooleate and diglycerol monooleate with poly(-isopropylacrylamide) nanogels, can form films of reverse cubic phases that are capable of responding to temperature stimulus. Owing to the presence of the nanogel particles, changing the temperature not only regulates the hydration of the cubic phase lipid films, but also the lateral organization of the lipid domains within the lipid self-assembled film. This opens up the possibility for new nanostructured materials based on lipid-polymer responsive layers.
生物膜不仅以平面双层结构存在,而且根据脂质组成,还可以弯曲成有趣的三维结构。为了充分理解这些结构的生物学意义以及揭示其在例如药物递送和其他生物医学装置等应用方面的全部潜力,需要定义明确的模型系统。在此,我们讨论了由构成脂质旋涂形成脂质非层状液晶(LC)表面层,随后对脂质层进行水合作用的过程。我们证明,与纯脂质LC层相比,可以形成具有不同性质的混合脂质聚合物膜。所形成的脂质膜的纳米结构和形态反映了本体中的情况。最值得注意的是,由甘油单油酸酯和二甘油单油酸酯与聚(异丙基丙烯酰胺)纳米凝胶组成的混合脂质层,可以形成能够响应温度刺激的反立方相膜。由于纳米凝胶颗粒的存在,改变温度不仅会调节立方相脂质膜的水合作用,还会调节脂质自组装膜内脂质域的横向组织。这为基于脂质 - 聚合物响应层的新型纳米结构材料开辟了可能性。