Suppr超能文献

量化野猪在多个空间和时间尺度上的活动驱动因素。

Quantifying drivers of wild pig movement across multiple spatial and temporal scales.

作者信息

Kay Shannon L, Fischer Justin W, Monaghan Andrew J, Beasley James C, Boughton Raoul, Campbell Tyler A, Cooper Susan M, Ditchkoff Stephen S, Hartley Steve B, Kilgo John C, Wisely Samantha M, Wyckoff A Christy, VerCauteren Kurt C, Pepin Kim M

机构信息

United States Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154 USA.

Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80305 USA.

出版信息

Mov Ecol. 2017 Jun 15;5:14. doi: 10.1186/s40462-017-0105-1. eCollection 2017.

Abstract

BACKGROUND

The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management.

METHODS

We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season.

RESULTS

We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales.

CONCLUSIONS

The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.

摘要

背景

动物的运动行为由在多个时空尺度上起作用的外在和内在因素决定,但我们对动物运动的许多了解仅来自同时考察一两个尺度的研究。了解跨多个尺度的动物运动驱动因素对于理解运动生态学的基本原理、预测分布变化、描述疾病动态以及确定野生动物保护和管理的有效方法至关重要。

方法

我们从美国南部六个州的13项不同研究中获取了超过40万头野猪的GPS位置,并在单一分析框架内量化了运动速率和家域大小。我们使用广义相加混合模型框架来量化五类广泛预测变量对运动的影响:个体水平属性、地理因素、景观属性、气象条件和时间变量。我们在三个时间尺度上考察了预测变量的影响:每日、每月以及使用研究期间的所有数据。我们既考虑了局部环境因素,如每日天气数据和到景观中各种资源的距离,也考虑了在更广泛空间尺度上起作用的因素,如生态区和季节。

结果

我们发现气象变量(温度和气压)、景观特征(到水源的距离)、一个广泛尺度的地理因素(生态区)以及个体水平特征(性别年龄组)驱动了野猪在所有尺度上的运动,但协变量与运动之间关系的大小和形式在不同时间尺度上有所不同。

结论

我们提出的分析框架可用于评估来自一系列物种的多个数据源产生的运动模式,同时考虑时空相关性。我们的分析表明,反应规范可根据响应数据的时间尺度而变化的程度,说明了根据研究的预期意义(例如,预测气候变化导致的运动影响与规划局部尺度管理)适当定义运动响应和协变量的时间尺度的重要性。我们认为,在同一框架内考虑多个空间尺度(而不是在单独研究之间进行比较)通过适当考虑误差相关性,可以更准确地量化跨尺度空间效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8ac/5471724/b7c3d61a98cb/40462_2017_105_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验