Suppr超能文献

二维定量构效关系(2D-QSAR)和三维定量构效关系(3D-QSAR)分析用于表皮生长因子受体抑制剂。

2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors.

机构信息

Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science and Shanghai University High Performance Computing Center, Shanghai University, Shanghai 200444, China.

Department of Oncology, Hainan General Hospital, Haikou, Hainan 570311, China.

出版信息

Biomed Res Int. 2017;2017:4649191. doi: 10.1155/2017/4649191. Epub 2017 May 29.

Abstract

Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with = 0.565 (cross-validated correlation coefficient) and = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR.

摘要

表皮生长因子受体(EGFR)是癌症治疗的重要靶点。在这项研究中,研究了 EGFR 抑制剂,以建立二维定量构效关系(2D-QSAR)模型和三维定量构效关系(3D-QSAR)模型。在 2D-QSAR 模型中,应用支持向量机(SVM)分类器结合特征选择方法来预测化合物是否为 EGFR 抑制剂。结果,通过十折交叉验证测试,2D-QSAR 模型的预测准确性为 98.99%,通过独立集测试的预测准确性为 97.67%。然后,在 3D-QSAR 模型中,建立了 = 0.565(交叉验证相关系数)和 = 0.888(非交叉验证相关系数)的模型,以预测 EGFR 抑制剂的活性。训练集和测试集的平均绝对误差(MAE)分别为 0.308 和 0.526 个对数单位。此外,还进行了分子对接研究,以研究 EGFR 抑制剂与 EGFR 之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b259/5467385/c76a1ea0ad97/BMRI2017-4649191.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验