Pascual-Ahuir Amparo, Manzanares-Estreder Sara, Timón-Gómez Alba, Proft Markus
Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP UPV-CSIC, Universitat Politècnica de València, 46022, Valencia, Spain.
Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010, Valencia, Spain.
Curr Genet. 2018 Feb;64(1):63-69. doi: 10.1007/s00294-017-0724-5. Epub 2017 Jun 19.
Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.
在此,我们回顾并更新了出芽酵母在适应高渗和盐胁迫过程中代谢控制的最新进展,这是分子水平上理解最为透彻的信号事件之一。这种环境胁迫易于施加,因此在过去被用于构建一个令人印象深刻的详细且全面的细胞适应模型。现在很清楚,这种胁迫会调节细胞的大量不同生理功能,这些功能共同促进细胞的存活和适应。主要防御机制包括在细胞核中大量诱导应激耐受基因、激活质膜上的阳离子转运,或渗透溶质的产生和细胞内积累。与此同时,细胞以协调的方式关闭管家基因的表达,延迟细胞周期进程,抑制基因组复制,并调节翻译效率以优化反应并避免细胞损伤。对于这种由胁迫直接调控的细胞功能之间迷人的相互作用,我们还必须添加另一层控制,这在生理上与胁迫耐受性相关。盐胁迫会立即引起代谢重新调整,这包括过氧化物酶体生物量和活性的上调,且与线粒体呼吸代谢的增强相协调。我们最近的研究结果与一个模型一致,即盐胁迫引发从发酵到呼吸的代谢转变,这种转变由脂肪酸过氧化物酶体氧化增强提供燃料。我们在此讨论这种胁迫诱导的代谢转变的调控细节及其在先前已知的适应功能背景下可能发挥的作用。