Suppr超能文献

基于航海数据融合的船舶运动轨迹预测算法

The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion.

作者信息

Borkowski Piotr

机构信息

Maritime University of Szczecin, Wały Chrobrego 1, Szczecin 70500, Poland.

出版信息

Sensors (Basel). 2017 Jun 20;17(6):1432. doi: 10.3390/s17061432.

Abstract

It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship's current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships.

摘要

对于在海上操纵船舶的航海员来说,了解自己和目标船舶在特定时间跨度内的未来位置对于有效解决碰撞情况至关重要。本文提出了一种船舶运动轨迹预测算法,该算法通过数据融合,考虑了来自多个双份自主设备的船舶当前位置测量值。这提高了预测的可靠性和准确性。该算法已在导航决策支持系统NAVDEC中实现,并在船舶上实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a207/5492365/0b5ba9f5dc19/sensors-17-01432-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验