Suppr超能文献

预测住院糖尿病患者的低血糖:9584 例糖尿病住院患者的回顾性分析。

Predicting inpatient hypoglycaemia in hospitalized patients with diabetes: a retrospective analysis of 9584 admissions with diabetes.

机构信息

Institute of Applied Health Research, University of Birmingham, Birmingham.

West Hertfordshire NHS Trust, Hertfordshire.

出版信息

Diabet Med. 2017 Oct;34(10):1385-1391. doi: 10.1111/dme.13409. Epub 2017 Jul 12.

Abstract

AIMS

To explore whether a quantitative approach to identifying hospitalized patients with diabetes at risk of hypoglycaemia would be feasible through incorporation of routine biochemical, haematological and prescription data.

METHODS

A retrospective cross-sectional analysis of all diabetic admissions (n=9584) from 1 January 2014 to 31 December 2014 was performed. Hypoglycaemia was defined as a blood glucose level of <4 mmol/l. The prediction model was constructed using multivariable logistic regression, populated by clinically important variables and routine laboratory data.

RESULTS

Using a prespecified variable selection strategy, it was shown that the occurrence of inpatient hypoglycaemia could be predicted by a combined model taking into account background medication (type of insulin, use of sulfonylureas), ethnicity (black and Asian), age (≥75 years), type of admission (emergency) and laboratory measurements (estimated GFR, C-reactive protein, sodium and albumin). Receiver-operating curve analysis showed that the area under the curve was 0.733 (95% CI 0.719 to 0.747). The threshold chosen to maximize both sensitivity and specificity was 0.15. The area under the curve obtained from internal validation did not differ from the primary model [0.731 (95% CI 0.717 to 0.746)].

CONCLUSIONS

The inclusion of routine biochemical data, available at the time of admission, can add prognostic value to demographic and medication history. The predictive performance of the constructed model indicates potential clinical utility for the identification of patients at risk of hypoglycaemia during their inpatient stay.

摘要

目的

探讨通过纳入常规生化、血液学和处方数据,是否可以采用定量方法来识别住院糖尿病患者发生低血糖的风险。

方法

对 2014 年 1 月 1 日至 12 月 31 日期间所有糖尿病住院患者(n=9584)进行回顾性横断面分析。低血糖定义为血糖水平<4mmol/L。使用多变量逻辑回归构建预测模型,模型中包含临床重要变量和常规实验室数据。

结果

通过预设的变量选择策略,结果表明,通过考虑背景药物(胰岛素类型、磺脲类药物的使用)、种族(黑人、亚洲人)、年龄(≥75 岁)、入院类型(急诊)和实验室测量值(估计肾小球滤过率、C 反应蛋白、钠和白蛋白)的综合模型,可以预测住院患者低血糖的发生。受试者工作特征曲线分析显示,曲线下面积为 0.733(95%CI 0.719-0.747)。选择既能提高敏感性又能提高特异性的最佳截断值为 0.15。内部验证得到的曲线下面积与主要模型无差异[0.731(95%CI 0.717-0.746)]。

结论

纳入入院时可获得的常规生化数据可增加人口统计学和药物史的预后价值。所构建模型的预测性能表明,该模型在识别住院患者低血糖风险方面具有潜在的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验