Suppr超能文献

通过比较多种回归方法预测住院患者的下一次血糖测量值:回顾性队列研究

Prediction of Next Glucose Measurement in Hospitalized Patients by Comparing Various Regression Methods: Retrospective Cohort Study.

作者信息

Zale Andrew D, Abusamaan Mohammed S, McGready John, Mathioudakis Nestoras

机构信息

Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

出版信息

JMIR Form Res. 2023 Jan 31;7:e41577. doi: 10.2196/41577.

Abstract

BACKGROUND

Continuous glucose monitors have shown great promise in improving outpatient blood glucose (BG) control; however, continuous glucose monitors are not routinely used in hospitals, and glucose management is driven by point-of-care (finger stick) and serum glucose measurements in most patients.

OBJECTIVE

This study aimed to evaluate times series approaches for prediction of inpatient BG using only point-of-care and serum glucose observations.

METHODS

Our data set included electronic health record data from 184,320 admissions, from patients who received at least one unit of subcutaneous insulin, had at least 4 BG measurements, and were discharged between January 1, 2015, and May 31, 2019, from 5 Johns Hopkins Health System hospitals. A total of 2,436,228 BG observations were included after excluding measurements obtained in quick succession, from patients who received intravenous insulin, or from critically ill patients. After exclusion criteria, 2.85% (3253/113,976), 32.5% (37,045/113,976), and 1.06% (1207/113,976) of admissions had a coded diagnosis of type 1, type 2, and other diabetes, respectively. The outcome of interest was the predicted value of the next BG measurement (mg/dL). Multiple time series predictors were created and analyzed by comparing those predictors and the index BG measurement (sample-and-hold technique) with next BG measurement. The population was classified by glycemic variability based on the coefficient of variation. To compare the performance of different time series predictors among one another, R, root mean squared error, and Clarke Error Grid were calculated and compared with the next BG measurement. All these time series predictors were then used together in Cubist, linear, random forest, partial least squares, and k-nearest neighbor methods.

RESULTS

The median number of BG measurements from 113,976 admissions was 12 (IQR 5-24). The R values for the sample-and-hold, 2-hour, 4-hour, 16-hour, and 24-hour moving average were 0.529, 0.504, 0.481, 0.467, and 0.459, respectively. The R values for 4-hour moving average based on glycemic variability were 0.680, 0.480, 0.290, and 0.205 for low, medium, high, and very high glucose variability, respectively. The proportion of BG predictions in zone A of the Clarke Error Grid analysis was 61%, 59%, 27%, and 53% for 4-hour moving average, 24-hour moving average, 3 observation rolling regression, and recursive regression predictors, respectively. In a fully adjusted Cubist, linear, random forest, partial least squares, and k-nearest neighbor model, the R values were 0.563, 0.526, 0.538, and 0.472, respectively.

CONCLUSIONS

When analyzing time series predictors independently, increasing variability in a patient's BG decreased predictive accuracy. Similarly, inclusion of older BG measurements decreased predictive accuracy. These relationships become weaker as glucose variability increases. Machine learning techniques marginally augmented the performance of time series predictors for predicting a patient's next BG measurement. Further studies should determine the potential of using time series analyses for prediction of inpatient dysglycemia.

摘要

背景

连续血糖监测仪在改善门诊患者血糖控制方面已显示出巨大潜力;然而,连续血糖监测仪在医院中并未常规使用,大多数患者的血糖管理仍由即时检测(指尖采血)和血清葡萄糖测量驱动。

目的

本研究旨在评估仅使用即时检测和血清葡萄糖观察结果预测住院患者血糖的时间序列方法。

方法

我们的数据集包括来自约翰霍普金斯医疗系统5家医院的184320例住院患者的电子健康记录数据,这些患者接受了至少1单位皮下胰岛素治疗,至少进行了4次血糖测量,并于2015年1月1日至2019年5月31日期间出院。在排除连续快速获得的测量值、接受静脉胰岛素治疗的患者或重症患者的测量值后,共纳入2436228次血糖观察结果。排除标准后,113976例住院患者中分别有2.85%(3253/113976)、32.5%(37045/113976)和1.06%(1207/113976)的患者被编码诊断为1型、2型和其他糖尿病。感兴趣的结果是下一次血糖测量的预测值(mg/dL)。通过将这些预测器与索引血糖测量值(采样保持技术)与下一次血糖测量值进行比较,创建并分析了多个时间序列预测器。根据变异系数对人群进行血糖变异性分类。为了比较不同时间序列预测器之间的性能,计算了R值、均方根误差和克拉克误差网格,并与下一次血糖测量值进行比较。然后将所有这些时间序列预测器一起用于Cubist、线性、随机森林、偏最小二乘法和k近邻方法。

结果

113976例住院患者的血糖测量中位数为12次(四分位间距5 - 24次)。采样保持、2小时、4小时、16小时和24小时移动平均值的R值分别为0.529、0.504、0.481、0.467和0.459。基于血糖变异性的4小时移动平均值的R值在低、中、高和非常高血糖变异性时分别为0.680、0.480、0.290和0.205。在克拉克误差网格分析的A区中,4小时移动平均值、24小时移动平均值、3次观察滚动回归和递归回归预测器的血糖预测比例分别为61%、59%、27%和53%。在完全调整的Cubist、线性、随机森林、偏最小二乘法和k近邻模型中,R值分别为0.563、0.526、0.538和0.472。

结论

独立分析时间序列预测器时,患者血糖变异性增加会降低预测准确性。同样,纳入较旧的血糖测量值也会降低预测准确性。随着血糖变异性增加,这些关系会变弱。机器学习技术对预测患者下一次血糖测量的时间序列预测器性能略有提升。进一步的研究应确定使用时间序列分析预测住院患者血糖异常的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ad/9929733/6e98666e66e8/formative_v7i1e41577_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验